

Sitecore Experience Platform 9.0 Sitecore Express Migration 3.0 Plugin Guide Rev: November 1, 2017

Sitecore Experience Platform 9.0

Sitecore Express Migration 3.0 Plugin
Guide
How to create a plugin for migrating a custom module

Sitecore Experience Platform 9.0

 2

Express Migration Plugin

The Express Migration plugin subsystem is designed to help you migrate custom Sitecore modules.

The plugin subsystem intercepts data during migration and adjusts it if necessary.

The plugin is an assembly file that contains a class that implements the IModulePlugin interface. You

must store every plugin in the \Sitecore Express Upgrade Tool\plugins folder. They are

automatically discovered when you run the tool.

Extensibility points

When you run the Express Migration Tool, a plugin plays an active role during:

 Configuration

The plugin generates a list of the module versions that are supported by the source and target
instance of Sitecore. The user uses this list to enable module migration and specify the versions
of the modules that they want to migrate.

The plugin checks if the selected version of a module is installed on the source instance.

The plugin can request additional parameters from the user, and validate that the values entered
are correct.

 Analysis

The Express Migration Tool invokes the relevant plugin before the Analysis step begins.

The plugin is invoked when the tool analyzes each item and file, and this lets you specify how
each particular entity is analyzed.

The plugin is invoked after the analysis process is complete.

 Migration

The plugin is invoked before the migration process begins.

The plugin is invoked when the tool migrates each item and file. The plugin can then modify every
item and file when they are read from the source instance and before they are migrated to the
target instance.

The plugin is invoked after the migration process is complete.

The Plugin API

Every plugin must contain a public class that implements the IModulePlugin interface. This class

should have a public parameterless constructor.

IModulePlugin interface

This interface defines the main communication contract between the Express Migration Tool and a plugin.

Sitecore Express Migration 3.0 Plugin Guide

 3

Note
When you create a plugin, you must ensure that it is resistant to sudden errors and interruptions

Properties

Property Description

Key The system name of the plugin. This name must be
unique.

Title The user-friendly name of the plugin that is shown in
the UI.

Methods

AppendModuleSpecificReportData

Provides the information about the module migration that is displayed in the final migration report.

void AppendModuleSpecificReportData(IReportSectionDataAppender dataAppender,

IPluginPersistentState persistentState)

CreateMigrationWorker

Creates an instance of the IMigrationModuleWorker interface.

IMigrationModuleWorker CreateMigrationWorker(MigrationContext migrationContext,

IPluginPersistentState persistentState)

CreatePopulationWorker

Creates an instance of the IPopulationModuleWorker interface.

IPopulationModuleWorker CreatePopulationWorker(MigrationContext migrationContext,

IPluginPersistentState persistentState)

GetSupportedSourceVersions

Generates a list of the source module versions that the plugin supports.

IReadOnlyCollection<SitecoreVersion> GetSupportedSourceVersions(SitecoreVersion

sourceSitecoreVersion)

GetSupportedTargetVersion

Generates a list of the target module versions that the plugin supports.

IReadOnlyCollection<SitecoreVersion> GetSupportedTargetVersion(SitecoreVersion

targetSitecoreVersion)

IsModuleInstalled

Checks whether the module is installed on the specified instance.

bool IsModuleInstalled(IInstance instance, SitecoreVersion pluginVersion)

Sitecore Experience Platform 9.0

 4

IPopulationModuleWorker interface

During analysis, the population worker performs all the module-specific operations.

Methods:

OnAfterPopulation

This method is called after the analysis process is complete.

void OnAfterPopulation(IPopulationStatusTracker statusTracker)

OnBeforePopulation

This method is called before the analysis process is started.

void OnBeforePopulation(IPopulationStatusTracker statusTracker)

OnFilePopulating

This method is called every time a file is analyzed. A plugin can make changes to the FileOperation
object and influence the analysis of the file. The method returns a flag that indicates whether each file
should be migrated or not.

OperationPopulationResult OnFilePopulating(FileOperation operation)

OnItemPopulating

This method is called every time an item is analyzed. A plugin can make any changes to the
ItemOperation object and influence the analysis of the item. The method returns a flag that indicates
whether each item should be migrated or not.

OperationPopulationResult OnItemPopulating(ItemOperation operation, [CanBeNull] ItemRow

etalonItemRow, [CanBeNull] ItemRow sourceItemRow)

IMigrationModuleWorker interface

The migration worker performs all the module-specific operations about converting and transferring data
during the migration step.

Methods

OnAfterMigration

This method is called after the migration process is completed.

void OnAfterMigration()

OnBeforeMigration

This method is called before the migration process is started.

void OnBeforeMigration()

Sitecore Express Migration 3.0 Plugin Guide

 5

OnFileMigrating

This method is called every time a file is migrated. It allows you to modify the file content before it is
migrated to the target instance.

Stream OnFileMigrating(FileOperation operation, Stream fileStream)

OnItemMigrating

This method is called every time an item is migrated. It allows you to modify the item content before it is
migrated to the target instance.

void OnItemMigrating(ItemOperation operation, ItemRecord item)

IUIConfigurableModulePlugin interface

The Express Migration Tool lets plugins have their own configuration tab, and asks users to specify
plugin-specific parameters.

In order to support this feature, the plugin must implement the IUIConfigurableModulePlugin

interface instead of the IModulePlugin interface.

However, this interface requires that you implement an additional method:

IUserDataRequest CreateConfigurationRequest(IPluginPersistentState state, MigrationContext

migrationContext);

Parameters:

Parameter Description

IPluginPersistentState state This is storage for the plugin-specific settings and
allows the plugin to save the settings and load
them when they are necessary.

MigrationContext migrationContext

This is an initialized context based on instance-
specific parameters.
For example, you have access to the file system,
databases, and configuration of the source,
target, or comparison instances and can use this
parameter if your configuration depends on some
instance-specific parameters - for example, for
validation.

The method should return an instance of the IUserDataRequest interface.

That interface should not be implemented by the plugin; it should use one of the predefined classes
instead.

UI data requesting framework overview

In order to simplify and consolidate the process of requesting data from the user, the Express Migration
Tool has a built-in framework that allows the requested data to be organized hierarchically, and to specify
the behavior for each request.

The framework makes two kinds of requests:

 Group requests

Sitecore Experience Platform 9.0

 6

 Simple requests

As result, plugins can return a single group request that contains other requests.

All the components related to this framework are located in the
Sitecore.ExpressMigration.Wizard.Steps.Common.UserDataRequesting.Requests

namespace.

Group requests

Group request Description

VirtualGroup An invisible wrapper that combines multiple requests.
Its main function is to act as the root for other requests
or to control the behavior of a set of requests for
example, to hide all the requests .

GroupWithLabel Lets you combine multiple requests in a GroupBox
control and give the group a header.

ToggleGroupWithLabel Lets you specify whether a group of requests is
enabled.

Simple requests

Simple requests Description

LabelBlock Lets you render some text as a label.
That is not actually a data request.

WarningBlock This is like a LabelBlock, but the text is highlighted in a
different way.

StringRequest,
BoolRequest,
OptionRequest

Allows you to request data of particular kind from the
user.
These are rendered as a label and require a particular
kind of input for example, a checkbox.

Localization

To support localization, when a text is required an IRequestText instance is used. If you want to

construct an instance, you must use the factory methods from the RequestText class.

The methods are:

Method Description

AsIs The text is not localized and is returned as is.

Sitecore Express Migration 3.0 Plugin Guide

 7

Method Description

Loc The text is localized with the specified localization
key.
Optionally you can pass a custom

ILocalizationService to use specific

localization key instead of a global one. This is
useful for plugins, because their text strings are
typically not present in the tool’s localized
resources.

LocFormatted The format is localized using the specified
localization key, and then the value is formatted

using the string.Format() method.

Mixins

To extend the behavior of a UI data request, a mixin approach is used. You can attach a set of custom
mixins to each request. Some mixins control the appearance of the request, while others control the
behavior for example, validation.

You should use extension methods to attach a mixin to a request.

The most commonly used extensions and underlying mixins are:

Mixin methods Description

WithValueValidation,
WithValidation,
WithValidator

These methods attach validation to a request.
The values are validated before they are saved
and if errors are found, the user is asked to
correct them.
You can also attach validation to a group request.
This lets you validate several values together.

WithBehaviorVisibility,
WithBehaviorReadOnly

These methods specify whether the request is
visible in the UI.
You can specify values directly or you can do so

in the IObservable method, which the tool

detects when there are any change in the values.

OnSave, SaveValueTo These methods specify callbacks which allow you
to export the values entered by the user to some
external storage.
These methods are called after the values have
been validated.

Example

 public IUserDataRequest GetRequest(dynamic dataStorage)

 {

 return new VirtualGroup()

 .WithInner

 (

 new LabelBlock(RequestText.AsIs("Welcome to configuration!")),

 //

 new StringRequest(RequestText.AsIs("Your name"), dataStorage.Name)

 .WithValidator(IsNotEmptyValidator)

 .SaveValueTo((string v) => dataStorage.Name = v),

 //

Sitecore Experience Platform 9.0

 8

 new BoolRequest(RequestText.AsIs("Do magic"), true)

 .WithBehaviorReadOnly(true)

);

 }

This example creates the following elements in the UI:

 A label that says “Welcome to configuration!”

 A text field with the “Your name“ label.

If the field contains a value, the value is displayed in the UI and the field is validated. If the value
is empty, the user is asked to enter a value.

The input is saved to the “dataStorage.Name” variable.

 A checkbox with the “Do magic“ label. The checkbox is read-only and the user it therefore not
allowed to modify it.

