
  
Sitecore Publishing Service 4.0.0  Sitecore Publishing Service Installation and Configuration Guide Rev: January 9, 
2020 

 

 

Sitecore Publishing Service 
Installation and Configuration 
Guide 
Sitecore Publishing Service 4.0.0  

How to install  and configure the Sitecore Publishing Service 



Sitecore Publishing Service 4.0.0 

 

 2 

Table of Contents 

Chapter 1 Introduction ................................................................................................................................ 5 
1.1 About the Publishing Service Module .............................................................................................. 6 

1.1.1 Publishing Service Concepts ....................................................................................................... 7 
Chapter 2 Installing the Sitecore Publishing Service .................................................................................... 8 

2.1 Prerequisites ................................................................................................................................... 9 
2.1.1 Sitecore Publishing Service Requirements .................................................................................. 9 
2.1.2 Sitecore Publishing Module Requirements .................................................................................. 9 

2.2 Manual Installation ........................................................................................................................ 10 
2.3 Scripted Installation ...................................................................................................................... 12 

2.3.1 Scaled Environment Considerations .......................................................................................... 12 
Chapter 3 Sitecore Publishing Service Commands .................................................................................... 14 

3.1 Introduction .................................................................................................................................. 15 
3.1.1 General Execution Format ......................................................................................................... 15 
3.1.2 Logs .......................................................................................................................................... 15 

3.2 Web Command ............................................................................................................................. 16 
3.2.1 Host Configuration Options ...................................................................................................... 16 
3.2.2 Custom Configuration Values .................................................................................................... 17 

3.3 IIS Command ................................................................................................................................ 18 
3.3.1 Install Options ........................................................................................................................... 18 

3.4 Configuration Command ............................................................................................................... 19 
3.4.1 Set Commands ......................................................................................................................... 19 
3.4.2 SetConnectionString Command ............................................................................................... 20 

3.5 Schema Command ........................................................................................................................ 21 
3.5.1 Upgrade .................................................................................................................................... 21 
3.5.2 Downgrade ............................................................................................................................... 22 
3.5.3 Reset ......................................................................................................................................... 22 
3.5.4 List ............................................................................................................................................ 23 

3.6 Diagnostics Command .................................................................................................................. 24 
3.6.1 Revision .................................................................................................................................... 24 

Chapter 4 Installing and Configuring the Sitecore Publishing Module ........................................................ 25 
4.1 Installing the Sitecore Publishing Module ...................................................................................... 26 
4.2 Post-installation Configuration...................................................................................................... 27 

4.2.1 Service Endpoints ..................................................................................................................... 27 
4.2.2 Cache and Index Configuration ................................................................................................. 27 

4.3 Recovery ....................................................................................................................................... 29 
4.4 Publisher Operations Service......................................................................................................... 30 
4.5 Security ......................................................................................................................................... 31 

4.5.1 Granting Permission to Perform a Full Republish ...................................................................... 31 
4.6 Operation Emitter ......................................................................................................................... 32 
4.7 Events ........................................................................................................................................... 33 

Chapter 5 Configuring the Sitecore Publishing Service .............................................................................. 34 
5.1 Publishing Targets......................................................................................................................... 35 
5.2 Configuration Sources ................................................................................................................... 37 

5.2.1 Configuration File Naming ........................................................................................................ 37 
5.3 Adding Configuration Values ......................................................................................................... 38 

5.3.1 Overriding Configuration Values ............................................................................................... 38 
5.3.2 Referencing Configuration Values ............................................................................................. 38 

5.4 Configuring Options ...................................................................................................................... 40 
5.4.1 DatabaseConnectionOptions .................................................................................................... 40 
5.4.2 PublishHostOptions .................................................................................................................. 40 
5.4.3 PublishJobHandlerOptions ........................................................................................................ 41 
5.4.4 PromoterOptions ...................................................................................................................... 42 
5.4.5 PromotionCoordinatorOptions ................................................................................................. 43 



Sitecore Publishing Service Installation and Configuration Guide  

3 

 3 

5.5 Database Configuration ................................................................................................................ 44 
5.5.1 Connection Strings .................................................................................................................... 44 
5.5.2 DefaultConnectionFactory ........................................................................................................ 44 
5.5.3 StoreFactory ............................................................................................................................. 45 
5.5.4 StoreFeatureLists...................................................................................................................... 46 
5.5.5 Custom Data Providers ............................................................................................................. 46 

5.6 Schema Configuration ................................................................................................................... 48 
5.6.1 The Deployment Map ............................................................................................................... 49 
5.6.2 Schemas ................................................................................................................................... 49 
5.6.3 Validating Schemas .................................................................................................................. 49 

5.7 Task Scheduling ............................................................................................................................ 50 
5.7.1 Task Configuration .................................................................................................................... 50 
5.7.2 Defining a Task ......................................................................................................................... 50 
5.7.3 Defining a Trigger ..................................................................................................................... 51 

5.8 Content Availability ....................................................................................................................... 52 
5.8.1 Configure Content Availability on the CD Server ....................................................................... 52 

5.9 Transient Error Tolerance for SQL Azure ....................................................................................... 54 
5.9.1 Connection Behaviors ............................................................................................................... 54 
5.9.2 Default Configuration ............................................................................................................... 54 
5.9.3 SQL Azure Configuration .......................................................................................................... 55 

5.10 Reporting Field Changes ............................................................................................................... 57 
5.11 Logging Configuration .................................................................................................................. 58 

5.11.1 Log configuration location ........................................................................................................ 58 
5.11.2 Configuring Logger Levels (Filters) ....................................................................................... 58 
5.11.3 Configuring Serilog ................................................................................................................... 59 
5.11.4 Console and File Sinks ........................................................................................................... 59 
5.11.5 Other Sinks ........................................................................................................................... 60 

5.12 Excluding Items from Automatic Deletion from the Target Databases .......................................... 61 
5.13 Configuring the Publishing Service to use Azure Application Insights ............................................ 62 

5.13.1 Prerequisites ............................................................................................................................. 62 
5.13.2 Configure the Publishing Service to use Application Insights ................................................. 62 
5.13.3 Adding Serilog.Sinks.ApplicationInsights .................................................................................. 63 

5.14 Troubleshooting ............................................................................................................................ 64 
Chapter 6 High Availability Configuration of the Sitecore Publishing Service ............................................ 65 

6.1 Introduction .................................................................................................................................. 66 
6.1.1 Workflow .................................................................................................................................. 66 

6.2 On premise ................................................................................................................................... 67 
6.3 Azure ............................................................................................................................................ 68 
6.4 Configuration (Advanced) ............................................................................................................. 69 
6.5 Supported Deployment Models ..................................................................................................... 70 

Chapter 7 Publishing with the Sitecore Publishing Module ........................................................................ 71 
7.1 The Sitecore Publishing Module .................................................................................................... 72 

7.1.1 The Publishing Dashboard ........................................................................................................ 72 
7.1.2 Publishing Viewer ..................................................................................................................... 73 

7.2 Publishing an Item ......................................................................................................................... 75 
7.3 Publishing a Website ..................................................................................................................... 77 
7.4 Publish all Items ............................................................................................................................ 79 
7.5 The Sitecore Commerce Server Connect Publishing Extension Package ........................................ 81 

Chapter 8 Upgrading from Version 2.x to Version 4.0.0 ............................................................................. 82 
8.1 Upgrading the Publishing Service .................................................................................................. 83 
8.2 Upgrade the Publishing Module (CM Server) ................................................................................. 84 
8.3 Upgrade the Publishing Module (CD servers) ................................................................................. 85 

Chapter 9 Upgrading from Version 3.1.x to Version 4.0.0 ........................................................................... 86 
9.1 Upgrading the Publishing Service .................................................................................................. 87 
9.2 Upgrade the Publishing Module (CM Server) ................................................................................. 88 
9.3 Upgrade the Publishing Module (CD servers) ................................................................................. 89 



Sitecore Publishing Service 4.0.0 

 

 4 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of this 
document are the property of Sitecore. Copyright © 2001-2020 Sitecore. All rights reserved. 



Sitecore Publishing Service Installation and Configuration Guide  

5 

 5 

Chapter 1  

Introduction 

This document describes how to install and configure the Sitecore Publishing Service. It also 
describes how to install and work with the Sitecore Publishing module. 

The document contains the following chapters:   

• Chapter 1 – Introduction 
An introduction to the Sitecore Publishing Service module. 

• Chapter 2 – Installing the Sitecore Publishing Service 
How to install the Sitecore Publishing Service manually or with a script. 

• Chapter 3 – Sitecore Publishing Service Commands 
The various command line arguments and startup modes supported by the Sitecore 
Publishing Service. 

• Chapter 4 – Installing and Configuring the Sitecore Publishing Module 
How to install the module as a Sitecore package and instructions for post-installation 
configuration. 

• Chapter 5 – Configuring the Sitecore Publishing Service 
How to configure the Sitecore Publishing Service. 

• Chapter 6 – High Availability Configuration of the Sitecore Publishing Service 
How you can support high availability requirements. 

• Chapter 7 – Publishing with the Sitecore Publishing Module 
How to use the module to publish. 

• Chapter 8 – Upgrading from Version 2.x to Version 4.0.0 
How to upgrade from Sitecore Publishing Service 2.x to version 4.0.0. 

• Chapter 9 – Upgrading from Version 3.1.x to Version 4.0.0 
How to upgrade from Sitecore Publishing Service 3.1.x to version 4.0.0. 



Sitecore Publishing Service 4.0.0 

 

 6 

1.1 About the Publishing Service Module  
The Publishing Service module is an optional replacement for the existing Sitecore publishing methods. This 
module increases publishing throughput, reduces the amount of time spent publishing large volumes of 
items, and offers greater data consistency and reliability. The module also improves the user experience and 
provides better visual feedback to the user on the state of the publishing system. 

The Publishing Service does not use any of the features, pipelines, and settings in the current publishing 
system. It is an entirely new way of publishing Sitecore items and media.  

The Publishing Service runs a separate process to the Sitecore CM instance.  

Installation involves: 

1. Installation and configuration of the Publishing Service. 

2. Installation of the integration module package on your Sitecore instance. The integration module 
ensures that every publishing action, such as triggering a site publish, is handed on to the publishing 
service. 

 

When you have installed the Publishing Service, it manages the whole publishing process: 

1. It queues and executes publishing jobs. 

2. It connects to the Source and Target (SQL) databases directly – reading and writing items in bulk. 

3. It issues events, such as cache clearing events, on Content Delivery servers. 

4. It reports status information back to UI features, such as the Publishing Dashboard application. 

 

 



Sitecore Publishing Service Installation and Configuration Guide  

7 

 7 

1.1.1 Publishing Service Concepts 
The Publishing Service introduces some new concepts for understanding how the different stages of the 
publishing work are handled: 

• Publishing jobs 

Previously, when a user chose to publish something, the publishing dialog remained open for the duration of 
the publish process. This was awkward if the user needed to reboot or if their session ended because they 
could not see the status of the publishing job.  

The publishing service places all publishing jobs in a queue. When you request a publishing job of any kind, it is 
queued and then processed as soon as possible. You can see all the active, queued, and completed jobs in the 
Publishing Dashboard application. 

• Manifests 

This is the collective name for all the tasks that a publishing job performs. The Publishing Service calculates 
the manifest at the beginning of the publishing job, before it moves any data.  

The Publishing Service looks at the items to see if there any restrictions that would prevent them from being 
published: 

o Valid dates/workflow states, and so on. 

o Evaluating whether the item might need to be deleted. 

o If it is a media file. 

o If extra data needs to be moved along with the item.  

Valid items are added to the manifest as a ‘Manifest Step’. Each publishing target gets its own manifest. A 
publishing job can therefore consist of one or more manifests. The completed manifest is a list of all the items 
that will be used in the next stage of the process - the Promotion. 

• Promotion 

This term describes the process of moving the items and data from the source, most often the Master 
database, to one or more publishing targets, such as the Web database.  

The Publishing Service creates a manifest and then moves it to one or more publishing targets. 

• Manifest results 

A list of the changes that were made during the promotion of the manifest. This includes things like item 
name changes and template updates.  

At the end of the publishing job, the results are passed to the publishEndResultBatch pipeline in 
Sitecore. Developers can hook into this pipeline to work with these results and update any third-party 
systems or features that may need to know about the changes to items.  

If there is no work to do, that is, if an item is unchanged even though it was in the manifest, a manifest result 
is not generated. 



Sitecore Publishing Service 4.0.0 

 

 8 

Chapter 2  

Installing the Sitecore Publishing Service 

You can install the Sitecore Publishing Service manually or by using the utility scripts that 
come with the package.  

This chapter describes: 

• Prerequisites 

• Manual Installation 

• Scripted Installation 

 



Sitecore Publishing Service Installation and Configuration Guide  

9 

 9 

2.1 Prerequisites 

2.1.1 Sitecore Publishing Service Requirements 
The Sitecore Publishing Service comes in a single ZIP archive that you can be execute directly after you have 
unpacked it. However, you should run the service under IIS because this gives greater configurability of, for 
example, host addresses and port binding.  

• Sitecore Publishing Service 4.0 zip file. 

The prerequisites for the Sitecore Publishing Service 4.0.0 release are: 

• Sitecore XP 9.1.0 

• Windows Server Hosting (.NET Core) 

To enable the service to run under IIS, you must install the latest version of the ASP.NET Core/.NET 
Core: Runtime & Hosting Bundle. 

2.1.2 Sitecore Publishing Module Requirements 
The Sitecore Publishing module is distributed as a Sitecore package. This package contains the UI for the 
publishing service. 

• Sitecore Publishing Module 4.0 zip file 

The prerequisites for the Sitecore Publishing Module 4.0 are: 

• Sitecore XP 9.1.0 

• Sitecore Publishing Service 4.0.0.zip  

https://dotnet.microsoft.com/download/dotnet-core/2.1
https://dotnet.microsoft.com/download/dotnet-core/2.1


Sitecore Publishing Service 4.0.0 

 

 10 

2.2 Manual Installation 
Before you install the Sitecore Publishing Service, make sure you have all the prerequisites in place.  

To install the Sitecore Publishing Service manually:  

1. Download the Sitecore Publishing Service package from the Sitecore Downloads page . 

2. Extract the contents of the archive to a folder of your choice. For example: 
C:\inetpub\wwwroot\sitecorepublishing 

3. In IIS, create a new site pointing to the folder.  

4. Start the IIS Manager and in the Connections panel, expand Sites. Right-click Sites and then click 
Add Website. 

5. In the Add Website dialog, fill in the required fields. 

 

Note 
If you add a custom host name, you must update your hosts file 
(C:\Windows\System32\drivers\etc\). 

6. In the IIS Manager, right-click the application pool for the website that you created, and then click 
Basic Settings. 

7. In the Edit Application Pool dialog, in the .NET CLR version field, select No Managed Code. 

 

Note 
The Application Pool user must have Read, Execute, and Write permissions to the site’s physical path. 

8. In the IIS Manager, right-click the application pool for the website that you created, and then click 
Advanced Settings. 

https://dev.sitecore.net/


Sitecore Publishing Service Installation and Configuration Guide  

11 

 11 

9. In the Advanced Settings dialog, in the Idle Time-out (minutes) field, enter 0. 

 

10. Configure the core, master, web and service connection strings for the service along with any 
additional configuration values.  

For more information about the configuration command, see the section SetConnectionString 
Command. 

11. To upgrade the database schema, run the schema upgrade command from the extracted folder.  

For more information about the schema upgrade command, see the section Upgrade. 

12. To access your website, enter 
http://<sitename>/api/publishing/operations/status in your browser.  

If you receive a value of { "Status" : 0 }, the application is installed correctly. If you receive 
any other value, check the application logs for further details. 



Sitecore Publishing Service 4.0.0 

 

 12 

2.3 Scripted Installation 
The Sitecore Publishing Service can be installed using commands built in to the application. 

To perform a scripted installation: 

1. Extract the contents of the archive to a folder of your choice. For example: 
c:\inetpub\wwwroot\publishingservice 

This will be the location where IIS points to the service. 

2. To enable the execution of multiple batches on a single connection, configure the connection strings 
that support Multiple Active Result Sets.   

Note 
If the connection string does not support Multiple Active Result Sets (), it will be changed when you 
invoke the configuration command.  

3. If the provided connection string does not already exist, it will be added to the configuration when 
you invoke the configuration command. Otherwise, it replaces the connection string with the same 
key.  

For example, to configure the core, master and web connection strings, run the following commands: 

o $ Sitecore.Framework.Publishing.Host configuration 
setconnectionstring core 'value' 

o $ Sitecore.Framework.Publishing.Host configuration 
setconnectionstring master 'value' 

o $ Sitecore.Framework.Publishing.Host configuration 
setconnectionstring web 'value' 

For more details, see the section SetConnectionString Command. 

4. Set additional configuration values as needed.   

For example, to set the instance name, run the following command: 

o $ Sitecore.Framework.Publishing.Host configuration, set the 
Sitecore:Publishing:InstanceName –val MyInstance. 

For more details, see the section Set Commands. 

5. Update the relevant schemas.  

For example, to upgrade the schemas to the latest versions, run the schema command: 

o $ Sitecore.Framework.Publishing.Host schema upgrade –-force 

For more details, see the section Schema Command. 

6. When the instance is configured and the schemas have been upgraded, you can install it into IIS using 
the following command: 

o $ Sitecore.Framework.Publishing.Host iis install –hosts –-force 

For more details, see the section IIS Command. 

2.3.1 Scaled Environment Considerations 
The default configuration for the Publishing Service specifies that the Links Data is stored in the Core 
database. 

If you are running the Publishing Service in a scaled environment and if your Links Data is stored in a different 
database than the Core database, you must update the Publishing Service configuration accordingly. 



Sitecore Publishing Service Installation and Configuration Guide  

13 

 13 

For example, if the Links Data is stored in the Web database, then the Publishing Service configuration needs 
the following override: 

<DefaultConnectionFactory> 
  <Options> 
   <Connections> 
    <Links> 
     <Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection, 
Sitecore.Framework.Publishing.Data</Type> 
     <Options> 
      <ConnectionString>${Sitecore:Publishing:ConnectionStrings:Web}</ConnectionString> 
     </Options> 
    </Links> 



Sitecore Publishing Service 4.0.0 

 

 14 

Chapter 3  

Sitecore Publishing Service Commands 

This chapter covers the commands that you can use to configure or execute the Sitecore 
Publishing Service.  

This chapter describes: 

• Introduction 

• Web Command 

• IIS Command 

• Configuration Command 

• Schema Command 

• Diagnostics Command 
 



Sitecore Publishing Service Installation and Configuration Guide  

15 

 15 

3.1 Introduction 
The Sitecore Publishing Service supports various command line arguments and startup modes. You can call 
the application directly to run the default command and optionally pass arguments to modify the execution. 

The Web command is the default command for the application. For more details, see the section Web 
Command. 

3.1.1 General Execution Format 
When you execute the commands, the following applies: 

• Executing the .exe will run the default command. 

• Options are named, for example, -h, --help. Some of the options may require passing values. 

• Arguments are passed separated with a space immediately after the command and before any 
options. 

• Child commands are passed as named arguments immediately after the parent command. 

3.1.2 Logs 

Any output from a command is added to a Commands-{data}.log file in the Logs folder in the root of the 
Publishing Service application. 



Sitecore Publishing Service 4.0.0 

 

 16 

3.2 Web Command 
The Web command is the default command for the application. When the Sitecore Publishing Service starts, 
it loads the configuration values from the following sources: 

• The command line 

• The Sitecore configuration files 

• The Sitecore environment variables 

• The ASPNETCORE environment variables 

Note 
The configuration values are loaded in the above order, where the values at the command line supersede the 
others. 

The command does not support any specific options or arguments, except from help and version. However, it 
does allow the passing of key-value pairs to allow starting the application with different configurations. 

You can pass the following options: 
 

Option Template Type Details Default value 

Help -? | --help Switch Displays help information.  

Version --version Switch Displays version 
information. 

 

Verbosity --verbosity Single - LogLevel Specify the level at which 
information is logged to the 
screen. 

Information 

3.2.1 Host Configuration Options 
To change the startup behavior of the application, you can use the following host configuration options 
through the command line or as environment variables. 
 

Option Aspnet 
Environment 

Sitecore 
Environm
ent 

Command line Type Details 

Detailed 
Errors 

ASPNETCORE_DE
TAILEDERRORS 

SITECORE
_DETAILE
DERRORS 

--detailederrors  Single - Bool Displays 
detailed error 
information 
instead of 
generic error 
pages. 

Capture 
Startup 
Errors 

ASPNETCORE_CA
PTURESTARTUPE
RRORS 

SITECORE
_CAPTUR
ESTARTU
PERRORS 

--
capturestartuperrors 

Single - Bool Displays errors 
caused during 
startup, if 
possible. 

Environme
nt 

ASPNETCORE_EN
VIRONMENT 

SITECORE
_ENVIRO
NMENT 

--environment  Single - String Starts the 
service in the 
specified 
environment. 



Sitecore Publishing Service Installation and Configuration Guide  

17 

 17 

Option Aspnet 
Environment 

Sitecore 
Environm
ent 

Command line Type Details 

URLs ASPNETCORE_UR
LS 

SITECORE
_URLS 

--urls Single - String Starts the 
service to 
respond to the 
specified URLs. 
Separate 
multiple URLs 
with a 
semicolon, for 
example, 
http://localhost
:5000;http://loc
lahost:5001. 

For example, to start the Publishing Service in a specific environment and on specific URLs: 

• $ Sitecore.Framework.Publishing.Host --urls 
'http://localhost:5000;http://localhost:50001' --environment 
Development.  

3.2.2 Custom Configuration Values 
Custom configuration values can be passed at the command line or defined via the environment. The values 
can be set using the following types: 
 

Type Example 

Configuration Key Sitecore:Publishing:Logging:Filters:Microsoft 

Aspnet Environment 
Variable 

Set ASPNETCORE_Sitecore__Publishing__Logging__Filters__Microsoft=Trace 

itecore Environment 
Variable 

Set SITECORE_Sitecore__Publishing__Logging__Filters__Microsoft=Trace 

Command line --Sitecore:Publishing:Logging:Filters:Microsoft Trace 

When you set the custom configuration values, use the following formats:  

• When you set the value as an environment, replace the colon ':' with a double underscore '__'. 

• The environment prefix consists of a type (ASPNETCORE or SITECORE) and a single underscore. 

• The command line arguments must have the prefix '--'. 

 



Sitecore Publishing Service 4.0.0 

 

 18 

3.3 IIS Command 
You can install the Publishing Service into the IIS. When you run the command, the site is configured in IIS 
under the specified sitename and port. The command creates two bindings based on the specified sitename 
and the machine name and, if requested, it can update the hosts file. 

When you run the commands, you may receive the following exception: 
 

Exception Information Resolution 

Cannot read configuration file 
due to insufficient permissions 

One or more IIS configuration files 
cannot be read by the current user. 

Execute the command as a user 
with the correct permissions. 

3.3.1 Install Options 
Use the following when you install the Publishing Service on IIS: 
 

Option Template Type Details Default Value  

Help -? | --help Switch Displays help information. 
 

Version --version Switch Displays version information. 
 

Verbosity --verbosity Single - 
LogLevel 

Specify the level where the 
information is logged to the screen. 

Information 

Site Name -s | --
sitename 

Single - 
String 

Specify the site that must be 
installed. 

'sitecore.publishing' 

App Pool 
Name 

-a | --
apppool 

Single - 
String 

Specify the application pool for the 
site. 

The sitename 

Port 
Number 

-p | --port Single - Int Specify the port that must be 
assigned to the default binding. Must 
be an integer. 

80 

Force --force Switch If the site already exists, this switch 
overwrites the current configuration. 
Without this, the command fails. 

 

Hosts --hosts Switch Update the hosts file entry. 
 

For example: 

• To install the service in IIS using the default values: 

o $ Sitecore.Framework.Publishing.Host iis install  

• To install the service in IIS using specific site and app pool names: 

o $ Sitecore.Framework.Publishing.Host iis install -site 
publishing.service -app publishing.service  

• To install the service in IIS using specific site and app pool names, a custom port, and update the 
machines hosts file (the use of force ensures that any existing site with the same name is updated): 

o $ Sitecore.Framework.Publishing.Host iis install -site 
publishing.service -app publishing.service --port 5001 --force –
hosts  



Sitecore Publishing Service Installation and Configuration Guide  

19 

 19 

3.4 Configuration Command 
The configuration command allows configuration values to be persisted in the configuration files for the 
global or the specific environments. 

When you run the commands, you might receive the following exception: 
 

Exception Information Resolution 

Access to the path '…' 
is denied 

The users do not have access to change 
the configuration files. 

Execute the command as a user with 
the correct permissions. 

3.4.1 Set Commands 
With the set command, you can write a configuration value to a configuration file: 
 

Command Example Details 

Key Sitecore:publishing:service:keyname Use this to set or modify the 
configuration file. The command must 
be separated with a colon ':'. 

You can use the following options: 
 

Option Template Type Details Default value 

Help -? | --help Switch Displays help information. 
 

Version --version Switch Displays version information 
 

Verbosity --verbosity Single - 
LogLevel 

Specify the level at which 
information is logged to the 
screen. 

Information 

Environment -e|--
environment 

Single - 
String 

Starts the service in the specified 
environment folder where 
changes will be persisted. 

global 

Filename -f|--file Single - 
String 

Specify the name of the file 
where changes will be persisted. 

sc.custom.json 

Value -v | --value Multiple - 
String 

Specify the value to persist. 
Repeat use to provide multiple 
values. If none are provided, 'null' 
is set as the value or '[]' for 
arrays. 

'null' or '[]' 

As Array --array Switch Provide this flag to ensure the 
value is set as an array. 

 

For example: 

• To set a sitecore:publishing:entry configuration entry: 

o $ Sitecore.Framework.Publishing.Host configuration set 
sitecore:publishing:entry -v myvalue  

• To set the configuration entry in a custom file: 

o $ Sitecore.Framework.Publishing.Host configuration set 
sitecore:publishing:entry -v myvalue -f sc.alternate.json  



Sitecore Publishing Service 4.0.0 

 

 20 

• To set the configuration entry in an alternative environment: 

o $ Sitecore.Framework.Publishing.Host configuration set 
sitecore:publishing:entry -v myvalue -e Development  

• To set the configuration entry to an array of values: 

o $ Sitecore.Framework.Publishing.Host configuration set 
sitecore:publishing:entry -v myvalue -v otherValue  

• To set the configuration entry to an array with a single value: 

o $ Sitecore.Framework.Publishing.Host configuration set 
sitecore:publishing:entry -v myvalue –array  

3.4.2 SetConnectionString Command 
With the SetConnectionString command, you can set or change a connection in a configuration file. 

The required arguments are as follows: 
 

Argument Example Details 

Name Core Specify the name of the 
connection string that you want to 
configure. 

Value Data Source=.\\SQLSERVER17;Initial 
Catalog=511108sc823_core;Integrated 
Security=False;User 
ID=***;Password=***;MultipleActiveResultSets=True; 
ConnectRetryCount=15;ConnectRetryInterval=1 

Specify the value of the 
connection string. 
If the value does not support 
MARS, it will be updated. 

For example: 

• To set a connection string value for the Core database: 

o $ Sitecore.Framework.Publishing.Host configuration 
setconnectionstring core  Data Source=.\\SQLSERVER17;Initial 
Catalog=511108sc823_core;Integrated Security=False;User 
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCoun
t=15;ConnectRetryInterval=1 

• To set the Core database connection string to point to the Master connection string configuration: 

o $ Sitecore.Framework.Publishing.Host configuration 
setconnectionstring core  
{Sitecore:Publishing:ConnectionStrings:Master}  

 



Sitecore Publishing Service Installation and Configuration Guide  

21 

 21 

3.5 Schema Command 
With the schema commands, you can install, update, and reset publishing schemas in the databases. 

Note 
Like the Web command, all the commands allow for the configuration values to be overridden. 

You can configure the schemas. For example, to provide alternative connection strings to those in 
configuration, you can pass them as options.  

For example: 

• $ Sitecore.Framework.Publishing.Host schema upgrade – 
Sitecore:Publishing:ConnectionStrings:Core <corestring> -- 
Sitecore:Publishing:ConnectionStrings:Master <masterstring> -- 
Sitecore:Publishing:ConnectionStrings:Web <webstring>  

When you run the commands, you might receive the following exception: 
 

Exception Information Resolution 

Create table permission 
denied in database 

The user connecting to the database 
does not have sufficient permissions. 

Provide a connection string with 
the correct permissions. 

For more information about the permissions that the user needs, see the section Database Configuration. 

3.5.1 Upgrade 
Use the following options to upgrade the connections to the specified schemas: 

Note 
To apply changes, you must use the --force flag option. 

Option  Template Type Details Default 
Value 

Help -? | --help Switch Displays help information. 
 

Version --version Switch Displays version information. 
 

Verbosity --verbosity Single - 
LogLevel 

Specify the level at which 
information is logged to the 
screen. 

Information 

Environment -e|--environment Single - String Specify the environment 
folder to load the connection 
string configuration. 

Production 

Schema 
Version 

-sv | --schema-version Single - Int Specify the schema version to 
downgrade to. 

0 

Force --force Switch Provide this option for the 
changes to be persisted. 

 

For example: 

• To upgrade the schemas to the latest version: 

o $ Sitecore.Framework.Publishing.Host schema upgrade –-force  

• To upgrade the schemas to version 3: 

o $ Sitecore.Framework.Publishing.Host schema upgrade -sv 3 –-force  

http://onenote/


Sitecore Publishing Service 4.0.0 

 

 22 

3.5.2 Downgrade  
Use the following options to downgrade schemas for connections. 

Note 
To apply changes, you must use the --force flag option. 

Option Template Type Details Default 
Value 

Help -? | --help Switch Displays help information. 
 

Version --version Switch Displays version information. 
 

Verbosity --verbosity Single - 
LogLevel 

Specify the level at which 
information is logged to the screen. 

Information 

Environment -e|--
environment 

Single - 
String 

Specify the environment folder to 
load the connection string 
configuration. 

Production 

Schema 
Version 

-sv | --schema-
version 

Single - Int Specify the schema version to 
downgrade to. 

0 

Force --force Switch Provide this option for the changes 
to be persisted. 

 

For example: 

• To downgrade the schemas to version 0: 

o $ Sitecore.Framework.Publishing.Host schema downgrade –-force  

• To downgrade the schemas to version 3: 

o $ Sitecore.Framework.Publishing.Host schema downgrade -sv 3 –-
force  

3.5.3 Reset  
Use the following options to reset the connections to use the specified schema: 

Note 
To apply changes, you must use the --force flag option. 

Option Template Type Details Default 
Value 

Help -? | --help Switch Displays help information. 
 

Version --version Switch Displays version information. 
 

Verbosity --verbosity Single - 
LogLevel 

The level at which information is logged 
to the screen. 

Information 

Environment -e|--
environment 

Single - 
String 

Specify the environment folder to load 
the connection string configuration. 

Production 

Schema 
Version 

-sv | --schema-
version 

Single - Int Specify the schema version to 
downgrade to. 

0 

Force --force Switch Provide this option for the changes to 
be persisted. 

 



Sitecore Publishing Service Installation and Configuration Guide  

23 

 23 

For example: 

• To reset the schemas to the latest version: 

o $ Sitecore.Framework.Publishing.Host schema reset –-force  

• To reset the schemas to version 3: 

o $ Sitecore.Framework.Publishing.Host schema reset -sv 3 –-force  

3.5.4 List 
Use the following options to display information for each schema/connection: 
 

Option Template Type Details Default 
Value 

Help -? | --help Switch Displays help information. 
 

Version --version Switch Displays version information. 
 

Verbosity --verbosity Single - 
LogLevel 

Specify the level at which information is 
logged to the screen. 

Information 

Details -d | --details Switch Display more information for each 
schema. 

 

Environment -e|--
environment 

Single - 
String 

Specify the environment folder to load 
the connection string configuration. 

Production 

For example  

• To list detailed information for all schemas: 

o $ Sitecore.Framework.Publishing.Host schema list –d  

• To list basic information for all schemas in the ‘Development’ environment: 

o $ Sitecore.Framework.Publishing.Host schema list -e Development  



Sitecore Publishing Service 4.0.0 

 

 24 

3.6 Diagnostics Command 
With the diagnostics command, you can run diagnostic tools on the Publishing Service and on the data stored 
on the Sitecore databases that relate to publishing. 

3.6.1 Revision  
Use the following options to check and fix the format of the revision ID of each item in the Source and Target 
databases. 
 

Option  Template  Type  Details  

Help  -? | --help  Switch  Displays help information.  

Detailed  -d | --details  Switch  Displays details of each item with an invalid 
revision ID. 

Fix fix Switch Changes each incorrect revision ID to a correct 
value.  

For example:  

• To list a summary of the number of invalid revision IDs in each database:  

o $ Sitecore.Framework.Publishing.Host.exe diagnostics revision  

• To list each item with an invalid revision ID: 

o $ Sitecore.Framework.Publishing.Host.exe diagnostics revision -d  

• To correct each invalid revision ID for items in each database: 

o $ Sitecore.Framework.Publishing.Host.exe diagnostics revision fix  

 



Sitecore Publishing Service Installation and Configuration Guide  

25 

 25 

Chapter 4  

Installing and Configuring the Sitecore Publishing 

Module 

The Sitecore Publishing module is distributed as a standard Sitecore package. However, you 
must perform some manual configuration steps after the installation. 

This chapter describes: 

• Installing the Sitecore Publishing Module 

• Post-installation Configuration 

• Recovery 

• Publisher Operations Service 

• Security 

• Operation Emitter 

• Events 



Sitecore Publishing Service 4.0.0 

 

 26 

4.1 Installing the Sitecore Publishing Module 
The Sitecore Publishing module is distributed as a standard Sitecore package. You can install it like any other 
Sitecore package. 

The Sitecore Publishing module package is called: 

• Sitecore Publishing Module 4.0.0 zip file 

To install the package: 

1. On the Sitecore Downloads page, download the installation package for the relevant module. 

2. On the Sitecore Launchpad, click Control Panel, and in the Administration section, click Install a 
package. 

The Install a Package wizard guides you through the installation process. 

3. Before you close the wizard, select Restart the Sitecore Client. 

https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service.aspx


Sitecore Publishing Service Installation and Configuration Guide  

27 

 27 

4.2 Post-installation Configuration 
After you have installed the Sitecore Publishing module, you must configure the module before you can use it. 

4.2.1 Service Endpoints 
To configure the service endpoints: 

1. In the Website root folder, navigate to the App_Config\Modules\PublishingService\ 
Sitecore.Publishing.Service.Config file. 

Note 
Do not modify the file directly. Use the Sitecore configuration Include features to change the values. 

2. Add a configuration file which overrides the PublishingServiceUrlRoot setting to point to 
your service module: 

========================================================== 
***Important! Copy and save this information*** 
========================================================== 
   BEFORE YOU CLICK NEXT: 
    - Ensure you have installed and configured the Sitecore Publishing Service (this 
module only enables integration with the service) 
        Documentation detailing how to install the service is available separately. 
 
        [Warning] This module will not work without a properly configured service 
instance. No items will be able to be published. 
     
    AFTER YOU CLOSE THE WIZARD: 
    After the package is installed, follow these steps to complete the Sitecore 
Publishing Service installation: 
    - Configure the service endpoints: 
        Add a configuration file which overrides the 'PublishingServiceUrlRoot' 
setting to point to your service module         
        Make sure the address contains a trailing slash 
        e.g. 
            <?xml version="1.0" encoding="utf-8"?> 
            <configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 
              <sitecore> 
                <settings> 
                  <setting 
name="PublishingServiceUrlRoot">http://sitecore.publishing/</setting> 
                </settings>     
              </sitecore> 
            </configuration> 
- Configure the Content Delivery Servers: 
Ensure that the following file is in the website 
'App_Config/Modules/PublishingService' directory: 
* Sitecore.Publishing.Service.Delivery.config 
 Ensure that the following files exist in the website 'bin' directory: 
* Sitecore.Publishing.Service.dll 
* Sitecore.Publishing.Service.Abstractions.dll 
* Sitecore.Publishing.Service.Delivery.dll 
* Sitecore.Framework.Condition.dll 

Important 
Make sure that the URL ends with a trailing slash and that it is formatted correctly. 

4.2.2 Cache and Index Configuration 
To enable the publishing service to clear caches and rebuild indexes on Content Delivery and Content 
Management servers, you must use the Sitecore.Publishing.Service.Delivery.config file.  



Sitecore Publishing Service 4.0.0 

 

 28 

If additional custom indexes have been created on a Sitecore instance, each index name must be added to the 
publishingservice:searchindex.rebuild setting in the IndexNames section: 

     <event name="publishingservice:searchindex:rebuild"> 
        <handler 

type="Sitecore.Publishing.Service.Delivery.TargetSearchIndexRebuildHandler, 
Sitecore.Publishing.Service.Delivery" method="RebuildTargetSearchIndex"> 

          <IndexNames hint="list:AddIndex"> 
            <index>sitecore_web_index</index> 
       <customIndex>MyCustomIndex</customIndex> 
          </IndexNames> 
        </handler> 
      </event> 

To enable the configuration file: 

1. Ensure that the following file is stored in the website 
App_Config/Modules/PublishingService folder: 

o Sitecore.Publishing.Service.Delivery.config 

2. Ensure that the following files are in the website bin directory: 

o Sitecore.Framework.Conditions.dll  

o Sitecore.Publishing.Service.dll  

o Sitecore.Publishing.Service.Abstractions.dll   

o Sitecore.Publishing.Service.Delivery.dll  

The following table describes the configuration that is required to support different content management 
setups: 
 

Instance roles Sitecore.Publishing.Servi
ce.Delivery.config, file 

publishingservice:cach
e:clear, event, default 
processor 

publishingservice:searchind
ex:rebuild,  
event, default processor 

Indexing instance - for 
example, CM, CD, and so 
on. 

enable enable enable 

CD – that is not responsible 
for indexing. 

enable enable disable 

CM – that is not responsible 
for indexing; and is 
supposed to check the data 
in the target DBs, for 
example, the web database 
from this CM. 
 

enable enable disable 

CM – that is not responsible 
for indexing; and is not 
supposed to check the data 
in the target DBs, for 
example, the web database 
from this CM. 
 

disable -- -- 

 



Sitecore Publishing Service Installation and Configuration Guide  

29 

 29 

4.3 Recovery 
When an item is modified during service downtime, a recovery process is activated and this process stores any 
modifications locally. When the service is available again, it recovers the stored changes and pushes them to 
the service. 

The recovery strategy determines how often the recovery process attempts to recover the changes and push 
them to the publishing service.  

To change the frequency of the recovery attempts, change the interval setting: 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 
  <sitecore> 
    <publishing.service> 
      <recoveryStrategy> 
        <param name="interval">30</param> 
      </recoveryStrategy> 
    </publishing.service> 
  </sitecore> 
</configuration> 



Sitecore Publishing Service 4.0.0 

 

 30 

4.4 Publisher Operations Service 
To capture the scenarios where the service is down, the Publisher Operations service executes 
requests inside a circuit breaker. When the circuit breaker detects a request error, it tracks the number of 
failures. When the service detects that the maximum allowed number of failures has been reached, it stops 
sending requests for a specified period. 

You can configure the number of failures and the length of the timeout period: 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 
  <sitecore> 
    <publishing.service> 
      <publisherOpsService> 
        <param name="circuitbreaker"> 
 
          <!-- The number of failed 'add event' requests to the service that are allowed 
before determining a communication problem. --> 
          <param name="exceptionsAllowedBeforeBreaking">3</param> 
 
          <!-- The duration until communication with the service is attempted again after a 
communication problem was last 
               detected. --> 
          <param name="secondsBeforRetrying">300</param> 
        </param> 
 
        <param name="recoveryStrategy" ref="publishing.service/recoveryStrategy"/> 
      </publisherOpsService> 
    </publishing.service> 
  </sitecore> 
</configuration> 



Sitecore Publishing Service Installation and Configuration Guide  

31 

 31 

4.5 Security 
When you install the Publishing Service module, the Publishing Service Administrator role is created. This role 
has full access to the Publishing Service features, including the full republish functionality on the Publishing 
Dashboard.  

Note  
The Sitecore Client Publishing and the Sitecore Client Advanced Publishing roles do not grant access to the full 
republish functionality.  

To avoid security permission conflicts, ensure that users that must be able to perform a full republish are 
members of the Publishing Service Administrator role and not members of the Sitecore Client Publishing or 
Sitecore Client Advanced Publishing roles. 

If you are using custom roles, make sure these roles do not inherit permissions from the Sitecore Client 
Publishing or Sitecore Client Advanced publishing roles. 

• To enable users on your custom roles to perform a full publish, you must edit the configuration file 
and specifically grant the custom security roles permission to perform a full site publish.  

Important 
You can only grant permission to perform a full site publish to a security role, not an individual user. 
Furthermore, you cannot grant permission to perform a full site publish to a security role by only editing the 
security roles in Sitecore. 

4.5.1 Granting Permission to Perform a Full Republish 
You can only explicitly grant permission to perform a full site publish to specific security roles in the 
configuration file: 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 
  <sitecore> 
    <publishing.service> 
      <api> 
        <services> 
          <allowFullPublishRoles> 
            <role>sitecore\Publishing Service Administrator</role> 
          </allowFullPublishRoles> 
        </services> 
      </api> 
    </publishing.service> 
  </sitecore> 
</configuration> 



Sitecore Publishing Service 4.0.0 

 

 32 

4.6 Operation Emitter 
The operation emitter buffers and streams item changes to the publishing service. You can configure it to 
stream content more frequently or in larger batches. 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 
  <sitecore> 
    <publishing.service> 
      <operationEmitter> 
        <!-- The interval at which an event batch is created to be sent to the service. --> 
        <param name="eventBufferingWindowMaxMilliseconds">2000</param> 
 
        <!-- The maximum size of an event batch that will be sent to the service. --> 
        <param name="eventBufferingMaxCount">50</param> 
      </operationEmitter> 
    </publishing.service> 
  </sitecore> 
</configuration> 
 



Sitecore Publishing Service Installation and Configuration Guide  

33 

 33 

4.7 Events 
The publishing service module exposes a new event in Sitecore:  

• publishingservice:publishend  

When the publishing service completes a publishing job, this event is triggered once for the entire job in 
addition to the three events from the existing publishing system:  

• publish:begin 

• publish:complete 

• publish:fail 

 
 



Sitecore Publishing Service 4.0.0 

 

 34 

Chapter 5  

Configuring the Sitecore Publishing Service 

The Sitecore Publishing Service supports custom configurations.  

This chapter contains the following sections: 

• Publishing Targets 

• Configuration Sources 

• Adding Configuration Values 

• Configuring Options 

• Database Configuration 

• Schema Configuration 

• Task Scheduling 

• Content Availability 

• Transient Error Tolerance for SQL Azure 

• Reporting Field Changes 

• Logging Configuration 

• Excluding Items from Automatic Deletion from the Target Databases 

• Configuring the Publishing Service to use Azure Application Insights 

• Troubleshooting 



Sitecore Publishing Service Installation and Configuration Guide  

35 

 35 

5.1 Publishing Targets 
The Publishing Service is configured to use a single publishing target by default, - the Internet.  

If you want to publish to another publishing target, you must configure it. 

We recommend that you create a patch file to edit the configuration files. 

To configure a publishing target: 

1. Add the connection string for the new publishing target database to the ConnectionStrings 
section of the configuration  

<?xml version="1.0" encoding="UTF-8"?> 
  <Settings> 
    <Sitecore> 
      <Publishing> 
        <ConnectionStrings> 

  <Stage>Data Source=.;Initial Catalog=Preview;Integrated 
Security=True;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=
1</Stage> 
      </Publishing> 
    </Sitecore> 
  </Settings> 

2. Add the new publishing target to the DefaultConnectionFactory configuration section.  

The name of the XML element in the DefaultConnectionFactory section must be the same as 
the name of the publishing target in Sitecore. 

<?xml version="1.0" encoding="UTF-8"?> 
  <Settings> 
    <Sitecore> 
      <Publishing> 
        <Services> 

   <DefaultConnectionFactory> 
      <Options> 
         <Connections> 
            <Stage> <!—This should be the name of the target in Sitecore -> 
                        

<Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection, 
Sitecore.Framework.Publishing.Data</Type> 

             <LifeTime>Transient</LifeTime> 
             <Options> 
           

<ConnectionString>${Sitecore:Publishing:ConnectionStrings:Stage}</ConnectionString> 
               <DefaultCommandTimeout>120</DefaultCommandTimeout> 
                           <Behaviours> 
                              <backend>sql-backend-default</backend> 
                              <api>sql-api-default</api> 
                           </Behaviours> 
                        </Options> 
                     </Stage> 
             </Options> 
   </DefaultConnectionFactory> 
 </Services> 

      </Publishing> 
    </Sitecore> 
  </Settings> 

3. Add the new publishing target to the StoreFactory configuration section.  

<?xml version="1.0" encoding="UTF-8"?> 
  <Settings> 
    <Sitecore> 

      <Publishing> 
        <Services> 
    <StoreFactory> 
               <Options> 
                  <Stores> 
                     <Targets> 
                        <Stage> 
                           

<Type>Sitecore.Framework.Publishing.Data.TargetStore, 
Sitecore.Framework.Publishing.Data</Type> 

                           <ConnectionName>Stage</ConnectionName> 



Sitecore Publishing Service 4.0.0 

 

 36 

                           
<FeaturesListName>TargetStoreFeatures</FeaturesListName> 

                           <Id>GUID FROM SITECORE</Id> 
                           <ScDatabase>Stage</ScDatabase> 
                        </Stage> 
                     </Targets> 
                  </Stores> 
               </Options> 
            </StoreFactory> 

        </Services> 
      </Publishing> 
    </Sitecore> 
  </Settings> 

The Id element in the configuration file must be the same as the Sitecore GUID of the publishing 
target in Sitecore.  
The ScDatabase element in the configuration file must be the same as the name of the publishing 
target item in Sitecore. 



Sitecore Publishing Service Installation and Configuration Guide  

37 

 37 

5.2 Configuration Sources  
During the startup of the Sitecore Publishing Service, the configuration sources are loaded in the following 
order:  

• Environment variables  

• Default Sitecore configuration: 

o  <installationPath>\config\sitecore  

• Global configuration:  

o <installationPath>\config\global  

• Environment specific configuration: 

o <installationPath>\config\<environment>  

During each stage of the loading, you can override previous values.  

Note 
If you apply any changes to the configuration files, you must restart the application.  

The configuration folder contains all the configuration files for the Publishing Service: 

• The Sitecore folder contains all the default configuration files provided by Sitecore that you can 
review to learn what can be configured. 

Important 
Do not modify the files in the Sitecore folder. They are automatically overwritten during the upgrade 
process. 

• The Global folder – contains the custom/module configuration files that extend or overwrite the 
Sitecore defaults. This is the location where developers must add their instance specific configuration 
files, for example, where a configuration file contains details of custom extensions and connection 
strings.  

• <EnvironmentName> folder – add custom folders to support different environments. For example, if a 
Development folder exists and the application environment is set to Development, the 
configuration files in this folder are loaded. The default environment Production will not load 
these files.  

5.2.1 Configuration File Naming 
When you create a configuration file, it must be prefixed with sc. in order to be loaded. When you create a 
configuration file, it must be an .xml, .json, or .ini file in order to be loaded. All other files are ignored.  



Sitecore Publishing Service 4.0.0 

 

 38 

5.3 Adding Configuration Values  
To add a configuration value, declare the value at the relevant path. For example, the default configuration 
contains an element called <Sitecore><Publishing><ConnectionStrings>:  

<Settings> 
  <Sitecore> 
    <Publishing> 
      <ConnectionStrings> 
        <!-- The Service connection is registered to map to the same connection string as the 
master database by default. --> 
        <Service>${Sitecore:Publishing:ConnectionStrings:Master}</Service> 
      </ConnectionStrings> 
      ... 
    </Publishing> 
  </Sitecore> 
</Settings> 

To add a new value, save the following in: 
<installationPath>\config\global\sc.connectionstrings.xml  

<Settings> 
    <Publishing> 
      <ConnectionStrings> 
        <Master>user id=sa;password=password;data 
source=.\SQLEXPRESS;database=sitecore.Master;MultipleActiveResultSets=True;</Master> 
      </ConnectionStrings> 
    </Publishing> 
</Settings> 

The connection string is now defined at: Sitecore:Publishing:ConnectionStrings:Master  

5.3.1 Overriding Configuration Values 
To override a configuration value, you must re-declare the value.  

For example, if the default configuration contains an element called 
<Sitecore><Publishing><Logging>:  

<Sitecore> 
    <Publishing> 
      <!-- The default Loglevel for the instance. --> 
      <Logging> 
        <Filters> 
          <Sitecore>Information</Sitecore> 
      ... 

Then, you can set the log level to Debug when running in Development, by saving the following as: 
<installationPath>\config\development\sc.logging.json  

{ 
  "Sitecore": { 
    "Publishing": { 
      "Logging": { 

  "Filters": { 
    "Sitecore": "Debug" 
   } 
} 

    }  
  }  
} 

Now, when the Publishing Service starts in a development environment, you get additional logging 
information. 

5.3.2 Referencing Configuration Values 
If you have a configuration value that needs to be referenced elsewhere, you can reference it using the syntax:  

• ${ a:b:c } 



Sitecore Publishing Service Installation and Configuration Guide  

39 

 39 

This enables you to overwrite the value in a single location, and at the same time the configuration supports 
its use in multiple configuration files.  

For example, the default configuration file contains a connection string entry for the service that is configured 
to point to the Master connection string by default.  

If you add a configuration file that contains a value for 
Sitecore:Publishing:ConnectionStrings:Master , the connection string is then used for both 
the Master database and the Service database.  

<Settings> 
  <Sitecore> 
    <Publishing> 
      <ConnectionStrings> 
        <!-- The Service connection is registered to map to the same connection string as the 
master database by default. --> 
        <Service>${Sitecore:Publishing:ConnectionStrings:Master}</Service> 
      </ConnectionStrings> 
    </Publishing> 
  </Sitecore> 
</Settings> 

Alternatively, the value at <Sitecore><Publishing><ConnectionStrings><Service> could be 
overwritten in another configuration file that provides an explicit connection string that should be used. 



Sitecore Publishing Service 4.0.0 

 

 40 

5.4 Configuring Options 
You configure the Sitecore Publishing Service by registering object types, so that the service can replace 
default implementations with custom alternatives. Many of the object types that are registered support an 
optional configuration section called Options.  

When an object type supports Options, you can provide additional configuration values to change the 
behavior of the application. 

5.4.1 DatabaseConnectionOptions 
You can use the DatabaseConnectionOptions class to specify the connection to a data source. 

The DatabaseConnectionOptions class is used by the type:  

• Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection. 

namespace Sitecore.Framework.Publishing.Data.AdoNet 
{ 
    public class DatabaseConnectionOptions  
    { 
        public string ConnectionString { get; set; } 
 
        public int CommandTimeout { get; set; } = 120; 
   

public Dictionary<string, string> Behaviours { get; set; } = new Dictionary<string, 
string>(StringComparer.OrdinalIgnoreCase); 
    } 
} 

The following example specifies an alternative value for the CommandTimeout setting of the Service 
connection: 

<Sitecore> 
    <Publishing> 
      <Services> 
        <DefaultConnectionFactory> 
          <Options> 
            <Service> 
              <Options> 
                <CommandTimeout>30</CommandTimeout> 
              </Options> 
            </Service> 
          </Options> 
        </DefaultConnectionFactory> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 

5.4.2 PublishHostOptions 
You can use the PublishHostOptions class to specify the main configuration options for logging in the 
Publishing Service and to specify the collection of services that must be registered. Services are all the types 
that are registered during start up.  

The PublishHostOptions class is used by the type: 

• Sitecore.Framework.Publishing.Host. 

namespace Sitecore.Framework.Publishing.Host 
{ 
    public class PublishHostOptions 
    { 
        public List<ConfigurationServiceType> Services { get; set; } = new 
List<ConfigurationServiceType>(); 
 
        public LoggingHostOptions Logging { get; set; } 
    } 
} 



Sitecore Publishing Service Installation and Configuration Guide  

41 

 41 

In the following example, a custom service is added to the collection of services.  

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <MyCustomService> 
          <Type>MyCustom.Service, MyCustom</Type> 
          <As>MyCustom.IService, MyCustom.Abstractions</As> 
        </MyCustomService> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 

 

Note 
To change the logging setup, see the section Logging Configuration. 

5.4.3 PublishJobHandlerOptions 
You can use the PublishJobHandlerOptions class to configure various aspects of the Publish Job 
handler implementations to optimize performance.  

The PublishJobHandlerOptions class is used by the type: 

• Sitecore.Framework.Publishing.PublishJobQueue.Handlers.IncrementalPub
lishHandler  

namespace Sitecore.Framework.Publishing.PublishJobQueue 
{ 

    public class PublishJobHandlerOptions 
    { 
        public int RelatedItemBatchSize { get; set; } = 2000; 
 
        public int ManifestBuilderBatchSize { get; set; } = 5000; 
 
        public int UnpublishedOperationsLoadingBatchSize { get; set; } = 2000; 
 
     public int DeletedItemsBatchSize { get; set; } = 2000; 
 
        public int MediaBatchSize { get; set; } = 2000; 
 
        public int TargetOperationsBatchSize { get; set; } = 2000; 
 
        public int SourceTreeReaderBatchSize { get; set; } = 2000; 
 
        public bool TransactionalPromote { get; set; } = true; 
 
        public bool ParallelPromote { get; set; } = true; 
 
        public bool ContentTesting { get; set; } = true; 
 
        public bool ContentAvailability { get; set; } = false; 
    } 
} 

The following configuration example specifies an alternative value for the default configuration: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <IncrementalPublishHandler> 
          <Options> 
            <!--Enable this feature if content testing is required and has been enabled in the 
Sitecore platform--> 
            <ContentTesting>True</ContentTesting> 
             
            <!--Specifies the batch size of items that are handled by the ManifestBuilder. 
Increasing or decreasing this value will affect performance, depending on the environment. --> 
            <ManifestBuilderBatchSize>5000</ManifestBuilderBatchSize> 
            



Sitecore Publishing Service 4.0.0 

 

 42 

            <!--Enables parallel promotion, this allows the promotion of item to multiple 
targets in parallel. This will speed up promotion, but consume more resources.--> 
            <ParallelPromote>False</ParallelPromote> 
 
            <!--Specifies the batch size of related items that are handled by the 
VariantsRelatedNodesTargetProducer. Increasing or decreasing this value will affect 
performance, depending on the environment. --> 
            <RelatedItemBatchSize>2000</RelatedItemBatchSize> 
 
            <!--Specifies the batch size of items that are handled by the 
TreeNodeSourceProducer. Increasing or decreasing this value will affect performance, depending 
on the environment. --> 
            <SourceTreeReaderBatchSize>2000</SourceTreeReaderBatchSize> 
 
            <!--Specifies the batch size of items that are handled by the 
VariantsValidationTargetProducer. Increasing or decreasing this value will affect performance, 
depending on the environment. --> 
            <TargetOperationsBatchSize>2000</TargetOperationsBatchSize> 
 
            <!--Enables transactional promotion, this performs the publish job as a 
transaction. --> 
            <TransactionalPromote>True</TransactionalPromote> 
 
            <!--Specifies the batch size of items that are handled by the 
UnpublishedNodeSourceProducer within IncrementalPublishHandler. Increasing or decreasing this 
value will affect performance, depending on the environment. --> 
            
<UnpublishedOperationsLoadingBatchSize>2000</UnpublishedOperationsLoadingBatchSize> 
          </Options> 
        </IncrementalPublishHandler> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 

5.4.4 PromoterOptions 
To optimize performance, use the PromoterOptions class to configure various aspects of the Publish Job 
promoter implementations. The PromoterOptions class is used by: 

• Sitecore.Framework.Publishing.DataPromotion.DefaultItemCloneManifestP
romoter  

• Sitecore.Framework.Publishing.DataPromotion.DefaultItemManifestPromot
er  

• Sitecore.Framework.Publishing.DataPromotionDefaultMediaManifestPromot
er  

namespace Sitecore.Framework.Publishing.Abstractions.DataPromotion 
{ 
    public class PromoterOptions 
    { 
        public int BatchSize { get; set; } = 500; 
    } 
} 

The following configuration example specifies an alternative BatchSize class for the registered 
ItemCloneManifestPromoter: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <ItemCloneManifestPromoter> 
          <Options> 
            <BatchSize>1000</BatchSize> 
          </Options> 
        </ItemCloneManifestPromoter> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 



Sitecore Publishing Service Installation and Configuration Guide  

43 

 43 

5.4.5 PromotionCoordinatorOptions 
You can use the DefaultPromotionCoordinatorOptions class to specify whether the Publishing 
Service should update the Descendants table. The default value is false, as this improves the performance 
of the publishing process. 

The DefaultPromotionCoordinatorOptions class is used by the type:  

• Sitecore.Framework.Publishing.DataPromotion.DefaultPromotionCoordinat
or  

namespace Sitecore.Framework.Publishing.DataPromotion 
{ 
    public class DefaultPromotionCoordinatorOptions 
    { 
        public bool RebuildDescendantsTable { get; set; } = false; 
    { 
} 

The following configuration example illustrates how to update the Descendants table: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <PromotionCoordinator> 
          <Options> 
            <RebuildDescendantsTable>true</RebuildDescendantsTable> 
          </Options> 
        </PromotionCoordinator> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 

 

Note 
If you use Sitecore’s digital marketing functionality, you must update the Descendants table. 

 



Sitecore Publishing Service 4.0.0 

 

 44 

5.5 Database Configuration 
Database configuration details can be seen in the sc.publishing.xml configuration file. 

For SQL database connections, the user defined in the connection string must have the following 
permissions: 

• Delete 

• Execute 

• Insert 

• Select 

• Update 

Note 
In addition, for executing the schema commands, the user must also have the Alter permission. 

5.5.1 Connection Strings 
The connection strings are configured under <Sitecore><Publishing><ConnectionStrings>. 

Sitecore expects three default connection strings to be configured – core, web, and master, and these are 
referenced elsewhere in the configuration.  

<Settings> 
    <Publishing> 
      <ConnectionStrings> 
        <Master>Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_master;Integrated 
Security=False;User 
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1<
/Master> 
        <Web>Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_web;Integrated 
Security=False;User 
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1<
/Web> 
        <Core>Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_core;Integrated 
Security=False;User 
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1<
/Core> 
      </ConnectionStrings> 
    </Publishing> 
</Settings> 

Currently, SQL connection strings require that they support Multiple Active Result Sets (MARS), so when 
configuring a connection string, you must set MultipleActiveResultSets to true.  

Use the following format or similar for connection strings:  

Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_core;Integrated Security=False;User 
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1 

For more information, see https://www.connectionstrings.com/sqlconnection/. 

5.5.2 DefaultConnectionFactory 
In the DefaultConnectionFactory configuration, the connections are defined. Each connection defines 
its type, configuration options, and name.   

The following example defines a connection called Internet that uses the web connection string: 

<DefaultConnectionFactory> 
 <Options> 
  <Connections> 
   <Internet> 
    <!-- Should match the name of the publishing target configured in SC. --> 
    <Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection, 
Sitecore.Framework.Publishing.Data</Type> 

https://www.connectionstrings.com/sqlconnection/


Sitecore Publishing Service Installation and Configuration Guide  

45 

 45 

    <LifeTime>Transient</LifeTime> 
    <Options> 
     <ConnectionString>${Sitecore:Publishing:ConnectionStrings:Web}</ConnectionString> 
     <DefaultCommandTimeout>120</DefaultCommandTimeout> 
     <Behaviours> 
      <backend>sql-backend-default</backend> 
      <api>sql-api-default</api> 
     </Behaviours> 
    </Options> 
   </Internet> 
  </Connections> 
 </Options> 
</DefaultConnectionFactory> 

The following connections are configured by default: 
 

Connections Type Points to 

Links SQL Core connection string 

Service SQL Service connection string 

Master SQL Master connection string 

Internet SQL Web connection string 

5.5.3 StoreFactory 
The StoreFactory configuration configures stores in the application that binds one or more connections 
to a collection of features.  

The configuration of Stores is divided into the following sections: 
 

Store Type Connections Details 

Service Service The store containing service data. 

Sources Master The store(s) for source data. Each source can register multiple 
connections. 

Targets Internet The store(s) for target data. Each entry is a possible publish 
target. 

ItemsRelationship Links The store for relationship information. 

Custom User defined Optional custom data stores can be configured. 

The following example defines the Sources and Targets sections: 

<StoreFactory> 
   <Options> 
     <Stores>        
       <Sources> 
         <Master> 
           <Type>Sitecore.Framework.Publishing.Data.SourceStore, 
Sitecore.Framework.Publishing.Data</Type> 
           <ConnectionNames> 
             <master>Master</master> 
           </ConnectionNames> 
           <FeaturesListName>SourceStoreFeatures</FeaturesListName> 
           <!-- The name of the Database entity in Sitecore. --> 
           <ScDatabase>master</ScDatabase> 
         </Master> 
       </Sources> 
       <Targets> 
         <!--Additional targets can be configured here--> 
         <Internet> 
           <Type>Sitecore.Framework.Publishing.Data.TargetStore, 
Sitecore.Framework.Publishing.Data</Type> 
           <ConnectionName>Internet</ConnectionName> 
           <FeaturesListName>TargetStoreFeatures</FeaturesListName> 
           <!-- The id of the target item definition in Sitecore. --> 



Sitecore Publishing Service 4.0.0 

 

 46 

           <Id>8E080626-DDC3-4EF4-A1D1-F0BE4A200254</Id> 
           <!-- The name of the Database entity in Sitecore. --> 
           <ScDatabase>web</ScDatabase> 
         </Internet> 
       </Targets>        
     </Stores> 
   </Options> 
</StoreFactory> 

 

Note 
The Sources and Targets must set the ScDatabase property. Targets must also set the Id property. 

5.5.4 StoreFeatureLists 
The StoreFeatureLists configuration specifies the list of features that are available on a particular store.  

In the following example, the features that are available to the source store are a number of repositories. A 
store feature list is linked back to a store via its name that is stored in the FeatureListName element. 

<StoreFeaturesLists> 
          <Options> 
            <FeatureLists> 
              <!--Source Store Features--> 
              <SourceStoreFeatures> 
                <ItemReadRepositoryFeature> 
                  <Type>Sitecore.Framework.Publishing.Data.CompositeItemReadRepository, 
Sitecore.Framework.Publishing.Data</Type> 
                </ItemReadRepositoryFeature> 
                <TestableContentRepositoryFeature> 
                  <Type>Sitecore.Framework.Publishing.Data.CompositeTestableContentRepository, 
Sitecore.Framework.Publishing.Data</Type> 
                </TestableContentRepositoryFeature> 
                <WorkflowStateRepositoryFeature> 
                  <Type>Sitecore.Framework.Publishing.Data.CompositeWorkflowStateRepository, 
Sitecore.Framework.Publishing.Data</Type> 
                </WorkflowStateRepositoryFeature> 
                <EventQueueRepositoryFeature> 
                  <Type>Sitecore.Framework.Publishing.Data.CompositeEventQueueRepository, 
Sitecore.Framework.Publishing.Data</Type> 
                  <options> 
                    <ConnectionName>master</ConnectionName> 
                  </options> 
                </EventQueueRepositoryFeature> 
              </SourceStoreFeatures> 
            </FeatureLists> 
          </Options> 
</StoreFeaturesLists> 

5.5.5 Custom Data Providers 
To support multiple providers of data for a source store, you can add custom data providers to the system. 

To add custom data providers to the system:   

1. Create a class that implements the IIndexableItemReadRepository interface. The following 
three methods are contained with the type: 

o GetItemNodeDescriptors – this method must be implemented to return all the items 
contained within the custom data provider. The IItemNodeDescriptor interface only 
contains a small number of properties to represent each item. 

o GetItemNodes – this method returns IEnumerable<IItemNode> when a list of item 
Guids is supplied. The IItemNode represents an item including its field data. 

o GetVariants – this method returns a IEnumerable<IItemVariant> when supplied 
with a list of IDataLocators. The IItemVarient represents an item variant (language and 
version) and its corresponding fields. 



Sitecore Publishing Service Installation and Configuration Guide  

47 

 47 

2. Create a connection class. You can inherit from IConnection, or use an existing type (for example, 
SQLDatabaseConnection). 

3. Create a repository builder by implementing 
DefaultRepositoryBuilder<IItemReadRepository, TRepo, TConnection>, 
where: 

o TRepo is what you entered in step 1  

o TConnection is what you entered in step 2. 

4. Update the configuration: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <!-- Register the custom repository builder --> 
        <MyCustomItemReadRepositoryBuilder> 
          <Type>My.Custom.ItemReadRepositoryBuilder, My.Custom</Type> 
          <As>Sitecore.Framework.Publishing.Repository.IRepositoryBuilder`1[[Sitecore.
Framework.Publishing.Item.IIndexableItemReadRepository, 
Sitecore.Framework.Publishing.Service.Abstractions]], 
Sitecore.Framework.Publishing.Service.Abstractions</As> 
        </MyCustomItemReadRepositoryBuilder> 
        <DefaultConnectionFactory> 
          <Options> 
            <Connections> 
              <!-- Register the custom connection --> 
              <Custom> 
                <Type>My.Custom.FileSystemProvider.FileSystemConnection, 
My.Custom</Type> 
                <Lifetime>Transient</Lifetime> 
                <Options>                   
                  <IdTablePrefix>pubExample</IdTablePrefix> 
                  <IdTableConnection>Master</IdTableConnection> 
                  <RootFolder>C:\siecoredata\Data\CustomItems</RootFolder> 
                </Options> 
              </Custom> 
         </Connections> 
       </Options> 
     </DefaultConnectionFactory> 
        <StoreFactory> 
          <Options> 
            <Stores> 
              <Sources> 
                <Master> 
                 <!-- add the connection to the master source --> 
                  <ConnectionNames> 
                 <custom>Custom</custom> 
               </ConnectionNames> 
             </Master> 
           </Sources> 
         </Stores> 
       </Options> 
     </StoreFactory> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 

Note 
Currently, the publishing service supports reading from a custom data provider, for example, reading from a 
customized source and then publishing that data as Sitecore items to the target database. 

However, writing or publishing to a custom data provider is not currently supported. 



Sitecore Publishing Service 4.0.0 

 

 48 

5.6 Schema Configuration 
During startup, the Sitecore Publishing Service checks whether the latest version of the schema is installed. If 
the schema needs to be updated, the service shuts down.  

You can use the schema command to update and install schemas in the registered connections.  

A schema is defined as a DLL that contains a set of resources for preparing a connection for its role in the 
service. The resources are organized into versions to support incremental schema upgrade and downgrade. 
This means that, in the example of an SQL schema, the DLL contains multiple scripts for dropping and 
recreating tables, stored procedures, and other requirements for accessing SQL data.  

Schemas can be split, based on their feature set and/or their connection type and they are configured under 
<Sitecore><Publishing><Services><SchemaInstaller><Options>.  

The following code sample is the default schema configuration that defines the suite of schemas that are 
installed by the schema update tool: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <SchemaInstaller> 
          <Options> 
            <!-- 
              The DeploymentMap defines which schemas are loaded into which connection 
            --> 
            <DeploymentMap> 
              <Custom> 
                <Links> 
                  <Common>Common</Common> 
                  <Data-Common>Data-Common</Data-Common> 
                  <Data-Links>Data-Links</Data-Links> 
                </Links> 
              </Custom> 
              <Service> 
                <Common>Common</Common> 
                <Service>Service</Service> 
              </Service> 
              <Source> 
                <Common>Common</Common> 
                <Data-Common>Data-Common</Data-Common> 
                <Data-Source>Data-Source</Data-Source> 
              </Source> 
              <Target> 
                <Common>Common</Common> 
                <Data-Common>Data-Common</Data-Common> 
                <Data-Target>Data-Target</Data-Target> 
              </Target> 
            </DeploymentMap> 
            <!--  
              The schemas bind names from the DeploymentMap to a Type/Assembly containing sql 
schemas to be loaded 
            --> 
            <Schemas> 
              <Common>Sitecore.Framework.Publishing.Common.Sql.Schema, 
Sitecore.Framework.Publishing.Common.Sql.Schema</Common> 
              <Data-Common>Sitecore.Framework.Publishing.Data.Common.Sql.Schema, 
Sitecore.Framework.Publishing.Data.Common.Sql.Schema</Data-Common> 
              <Data-Links>Sitecore.Framework.Publishing.Data.Links.Sql.Schema, 
Sitecore.Framework.Publishing.Data.Links.Sql.Schema</Data-Links> 
              <Data-Source>Sitecore.Framework.Publishing.Data.Source.Sql.Schema, 
Sitecore.Framework.Publishing.Data.Source.Sql.Schema</Data-Source> 
              <Data-Target>Sitecore.Framework.Publishing.Data.Target.Sql.Schema, 
Sitecore.Framework.Publishing.Data.Target.Sql.Schema</Data-Target> 
              <Service>Sitecore.Framework.Publishing.Service.Sql.Schema, 
Sitecore.Framework.Publishing.Service.Sql.Schema</Service> 
            </Schemas> 
          </Options> 
        </SchemaInstaller> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 



Sitecore Publishing Service Installation and Configuration Guide  

49 

 49 

5.6.1 The Deployment Map  
The DeploymentMap section maps the schemas to connection types.  

The following code sample binds the Common, Data-Common, and Data-Links schemas that must be installed 
on the custom Links connection. The Common and Service schemas are installed on the Service connection.  

<DeploymentMap> 
              <Custom> 
                <Links> 
                  <Common>Common</Common> 
                  <Data-Common>Data-Common</Data-Common> 
                  <Data-Links>Data-Links</Data-Links> 
                </Links> 
              </Custom> 
              <Service> 
                <Common>Common</Common> 
                <Service>Service</Service> 
              </Service> 

5.6.2 Schemas  
The Schemas section names all of the schemas that are installed.  

Each configuration value should point to a type in an assembly where the schemas can be discovered. The 
following code sample names the Sitecore.Framework.Publishing.Common.Sql.Schema 
assembly as Common and the Sitecore.Framework.Publishing.Data.Common.Sql.Schema 
assembly as Data-Common:  

<Schemas> 
 <Common>Sitecore.Framework.Publishing.Common.Sql.Schema, 

Sitecore.Framework.Publishing.Common.Sql.Schema</Common> 
   <Data-Common>Sitecore.Framework.Publishing.Data.Common.Sql.Schema, 
Sitecore.Framework.Publishing.Data.Common.Sql.Schema</Data-Common> 

5.6.3 Validating Schemas  
When the publishing service starts, it checks whether the latest schema is installed. The version of the 
installed schemas retrieved from the PublishingSchema table is compared to the schema version in the 
resource file. If a schema upgrade is needed, the service will shut down and log an error message telling you to 
upgrade the schema.  

  



Sitecore Publishing Service 4.0.0 

 

 50 

5.7 Task Scheduling 
The task scheduler is a service that manages the creation of tasks at start up and enables the addition and 
execution of tasks at runtime. 

5.7.1 Task Configuration 
The Publishing Service lets you configure independent tasks in the system. It contains two task definitions by 
default: 

• PublishTask – handles requests to publish items from sources to targets. 

• PublishJobCleanUpTask – handles the periodic clean-up of old publishing jobs. 

The default tasks are configured in the config\sitecore\sc.publishing.tasks.xml file. 

PublishTask 

The PublishTask task is configured with two triggers: 

• Interval – the interval trigger runs every few seconds to check for publishing jobs that were 
requested while the previous publishing job was running. 

• Event – the event-based trigger causes a publishing job to start immediately after it is requested. If 
a publishing job is already being processed, the job is delayed until the next interval. 

PublishJobCleanUpTask 

The PublishJobCleanUpTask task removes old publishing jobs from the database. It has a single trigger 
that is raised on an infrequent schedule and removes jobs that are over a week old. 

You can configure the task by changing its options: 

• JobAge – the time that must have passed since a publishing job’s Stopped time. The default value 
is seven days. If a publishing job’s Stopped time is older than the JobAge, it is eligible for clean-up. 

• BatchSize – the number of items in the batch that can be deleted together. The default value is 50. 

5.7.2 Defining a Task 
When you have implemented a task, it must be added to the configuration so that it can be created at startup: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <Scheduler> 
          <Options> 
            <Tasks> 
              <CustomTask> 
                <TaskDefinition Type="Custom.Task, Custom" BindOptions="property"> 
                  <Options> 
                    <Id>Custom Task</Id> 
                    <Categories> 
                      <Custom>Custom</Custom> 
                      <Other>Other</Other> 
                    </Categories> 
                  </Options> 
                </TaskDefinition> 
              </CustomTask> 
            </Tasks> 
          </Options> 
        </Scheduler> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 



Sitecore Publishing Service Installation and Configuration Guide  

51 

 51 

A task can expose additional parameters, such as ID and Categories, to help identify the task when the 
system is running. 

5.7.3 Defining a Trigger 
A task cannot run if there are no triggers associated with it. Each trigger is a unique instance, so you can 
register multiple triggers of the same type. For example, two interval triggers could be registered that trigger 
a task at different polling intervals: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Services> 
        <Scheduler> 
          <Options> 
            <Tasks> 
              <CustomTask> 
                <TaskDefinition Type="Custom.Task, Custom" BindOptions="property"> 
                  <Options> 
                    <Id>Custom Task</Id> 
                    <Categories> 
                      <Custom>Custom</Custom> 
                      <Other>Other</Other> 
                    </Categories> 
                  </Options> 
                </TaskDefinition> 
                <TriggerDefinitions> 
                  <Interval1 
Type="Sitecore.Framework.Scheduling.Triggers.IntervalTriggerDefinition, 
Sitecore.Framework.Scheduling" BindOptions="property"> 
                    <Options Interval="00:10:00" /> <!-- Raise every ten minutes --> 
                  </Interval1> 
                  <Interval2 
Type="Sitecore.Framework.Scheduling.Triggers.IntervalTriggerDefinition, 
Sitecore.Framework.Scheduling" BindOptions="property"> 
                    <Options Interval="00:00:10" /> <!-- Raise every ten seconds --> 
                  </Interval2> 
                </TriggerDefinitions> 
              </CustomTask> 
            </Tasks> 
          </Options> 
        </Scheduler> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 



Sitecore Publishing Service 4.0.0 

 

 52 

5.8 Content Availability 
The content availability feature ensures that the valid version of an item is always available in the target 
database at the time of publishing. In this way, you do not have to perform a publishing operation every time 
an item version expires and the next version should be displayed. 

When you enable content availability and publish an item, the currently valid item version and all the versions 
that are valid for future publishing are moved from the source database to the target database. A new 
pipeline that is enabled in the content availability configuration file automatically clears the Sitecore item 
cache when an item version expires and then, when a contact accesses the item, the next valid version is 
displayed. 

Important 
If you are using HTML caching on a rendering, the Sitecore item cache does not automatically clear. In 
addition, if you use a data source inside a rendering, and if the data source item switches to display a new 
version, the hosting rendering is not updated because there is nothing that indicates that an update of a 
dependant data source has been triggered. 

5.8.1 Configure Content Availability on the CD Server 
To configure content availability on the Content Delivery (CD) server: 

1. Place the DLL Sitecore.Publishing.Service.Delivery.dll in the bin directory of the 
CD server.  

2. Copy the Sitecore.Publishing.Service.ContentAvailability.config file to the 
CD server and enable it. 

3. If you use Lucene for content search, enable the 
Sitecore.Publishing.Service.ContentAvailability.lucene.config file.  

4. If you use Solr for content search, enable the 
Sitecore.Publishing.Service.ContentAvailability.solr.config file. 

5. Restart your instance.  

When an item is indexed the computed fields below stores the valid inception and expiry dates for each 
version. When a query is issued to content search then the isAvailable flag is checked to ensure the hiding and 
display of the valid versions in a search context that matches the behaviour of the Item API. 

The content availability functionality adds the following new fields: 

• Computed fields: 

o versionsunrisedate 

o versionsunsetdate 

o publishablefrom  

o publishableto 

• Virtual field  

o isAvailable 

Publishing Service Setup  

To enable content availability in the Publishing Service: 

1. In the config directory of the Publishing Service, enable the 
sc.publishing.contentavailability.xml file.  

2. Restart the Publishing Service.  

3. With DEBUG logging enabled, ensure that the Content Availability status is set to ON. 



Sitecore Publishing Service Installation and Configuration Guide  

53 

 53 

When content availability is enabled, the: 

• Filter items pipeline enables publication checks on items as they come out of the database.  

• GetLinqFilter processor and VirtualField amend a publication check to each LINQ query going out so 
that non-published data does not show.   

Important 
It is possible to misconfigure an items validity period so that it becomes invalid and disappears. For example, 
if you set the PublishFrom field to 02nd January 2017 and the PublishTo field to 1st January 2017, the item 
does not have a valid date range that allows the item to be displayed. In Content Editor, in the Publishing 
Viewer, you can to see a visual representation of the date range of an item or item version and diagnose these 
sorts of errors. 

 



Sitecore Publishing Service 4.0.0 

 

 54 

5.9  Transient Error Tolerance for SQL Azure 
If you host any application databases in SQL Azure, Microsoft recommends that you implement a retry 
strategy for all the database requests to overcome any transient errors that might occur due to the nature of a 
shared cloud infrastructure.  

Note 
For more information, see an introduction to transient errors in SQL Azure. 

The Publishing Service provides an implementation of this retry behavior for ADO.NET database requests, 
however, you must explicitly enable the behavior via configuration according to which databases are hosted 
on SQL Azure:  

• The retry behavior is defined in …\config\azure\sc.publishing.sqlazure.xml.   

• A typical configuration setup is provided with the Publishing Service in 
…\config\azure\sc.publishing.sqlazure.connections.xml.example. Edit this 
file accordingly and enable it by removing the .example extension.  

For more information about editing this file, see the section SQL Azure Configuration. 

Because both files are supplied in the Azure environment folder, you must start the service with the 
environment setting set to Azure. You can move these files into a different environment folder to achieve a 
different behavior. 

5.9.1 Connection Behaviors 
By default, the Publishing Service comes with the concept of connection behaviors that provide the 
opportunity for transient errors to be mitigated seamlessly in the application for ADO.NET connections.   

When submitting a request to the database in the Publishing Service with ADO.NET, a connection behavior is 
chosen according to the connection used and the context in which the request is made.  

The context is a Data Access Context, which is either api or backend, depending on the type of work that is 
performed in each part of the system: 

• api – when the data is being processed to serve a request for information from an out-of-process 
component (for example, the publishing service API). 

• backend – when data is being processed as part of a background operation (for example, a publishing 
job). 

Note 
Microsoft recommends that you configure the API and Backend contexts differently with regards to transient 
error handling. 

A connection behavior is essentially a component that can wrap each command sent to the database, and 
thereby catch any exceptions that get returned, and repeat the command any number of times if necessary.   

By default, the Publishing Service is configured with a no retry connection behavior for all connections and 
contexts, which is essentially a null behavior that does not provide any additional logic. 

5.9.2 Default Configuration 
The connection behaviors are configured in the 
Settings\Sitecore\Services\DbConnectionBehaviours section of the configuration. The 
connection behavior used when a request is made to a database is chosen according to the current Data 
Access Context, and the name of the connection behavior configured for the current connection. 

http://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx#Timeouts_amp_Connection_Management


Sitecore Publishing Service Installation and Configuration Guide  

55 

 55 

The following sample is an extract from the default configuration for the Service connection, where you can 
see that the Service connection is configured to use the sql-backend-default and sql-api-default behaviors for 
the api and backend contexts respectively. 

<Service> 
 <Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection, 
 Sitecore.Framework.Publishing.Data</Type>  
 <LifeTime>Transient</LifeTime> 
 <Options>  
  <ConnectionString>${Sitecore:Publishing:ConnectionStrings:Service}</ConnectionString> 
     <DefaultCommandTimeout>120</DefaultCommandTimeout> 
     <Behaviours> 
        <backend>sql-backend-default</backend> 
         <api>sql-api-default</api> 
     </Behaviours> 
  </Options> 
</Service> 

The following sample is an extract from the default configuration of the two connection behaviors. This 
configuration defines the command time and a retryer (by name) that are used for the connection behavior.   

In the sc.publishing.services.xml file, the retryers section defines the configuration of the available 
retryers. 

<DbConnectionBehaviours> 
          <Options> 
            <Entries>  
              <!-- Used for all DatabaseConnections created in backend contexts (typically 
publishing jobs). --> 
              <sql-backend-default> 

                
<Type>Sitecore.Framework.Publishing.Data.AdoNet.NoRetryConnectionBehaviour, 
Sitecore.Framework.Publishing.Data</Type> 
                <Options> 
                  <Name>Default Backend No Retry behaviour</Name> 
                  <CommandTimeout>120</CommandTimeout> 
         <Retryer>NoRetryer</Retryer> 
                </Options> 
              </sql-backend-default> 
  
              <!-- Used for all DatabaseConnections created in API contexts. --> 
              <sql-api-default> 
                <Type>Sitecore.Framework.Publishing.Data.AdoNet.NoRetryConnectionBehaviour, 
Sitecore.Framework.Publishing.Data</Type> 
                <Options> 
                  <Name>Default Api No Retry behaviour</Name> 
                  <CommandTimeout>10</CommandTimeout> 
                  <Retryer><NoRetryer/Retryer> 
                </Options> 
              </sql-api-default> 
  
            </Entries> 
          </Options> 
</DbConnectionBehaviours> 

5.9.3 SQL Azure Configuration 
The connection behaviors in the Publishing Service are aligned with Microsoft’s recommendations for 
mitigating transient errors in SQL Azure. They are specified in the 
…\config\azure\sc.publishing.sqlazure.xml file.  

If you are not running the Publishing Service in Azure, the sc.publishing.sqlazure.xml file should be 
applied as a configuration patch. For more information, see the section Configuration Sources. 

In this file, the following two connection behaviors are added: 

<sql-backend-azure> 
      
                  <Type>Sitecore.Framework.Publishing.Data.AdoNet.ConnectionRetryBehaviour, 
Sitecore.Framework.Publishing.Data</Type> 
 
                <Options> 
                  <Name>SQL Azure Backend Exponential Backoff</Name> 



Sitecore Publishing Service 4.0.0 

 

 56 

                  <CommandTimeout>120</CommandTimeout> 
                  <Retryer>DefaultExponentialRetry</Retryer>                </Options> 
              </sql-backend-azure> 
  
            <sql-api-azure> 

 

               
                <Type>Sitecore.Framework.Publishing.Data.AdoNet.ConnectionRetryBehaviour, 
Sitecore.Framework.Publishing.Data</Type> 

 
                <Options> 
                  <Name>SQL Azure API Fixed Backoff</Name> 
                  <CommandTimeout>10</CommandTimeout> 
                  <Retryer>DefaultFixedIntervalRetry</Retryer>> 
                </Options> 
              </sql-api-azure> 

The two connection behaviors use the Transient Fault Handling Application Block from Microsoft to perform 
the retrying, and to identify a failure as being a transient failure.   

For more information, see http://topaz.codeplex.com/. 

To use these connection behaviors, the ADO.NET connections that represent databases hosted on SQL Azure 
must be configured to use them.  

In the …\config\azure\sc.publishing.sqlazure.connections.xml.example file, you can 
see an example of how to specify this configuration. It specifies the configuration to set all connections to use 
the SQL Azure connection behaviors and must be edited according to the deployment: 

<Sitecore> 
    <Publishing> 
      <Services> 
        <DefaultConnectionFactory> 
          <Options> 
            <Connections> 
              <Links> 
                <Options> 
                  <Behaviours> 
                    <backend>sql-backend-azure</backend> 
                    <api>sql-api-azure</api> 
                  </Behaviours> 
                </Options> 
              </Links> 
              <Service> 
                <Options> 
                  <Behaviours> 
                    <backend>sql-backend-azure</backend> 
                    <api>sql-api-azure</api> 
                  </Behaviours> 
                </Options> 
              </Service> 
              <Master> 
                <Options> 
                  <Behaviours> 
                    <backend>sql-backend-azure</backend> 
                    <api>sql-api-azure</api> 
                  </Behaviours> 
                </Options> 
              </Master> 
              <Internet> 
                <Options> 
                  <Behaviours> 
                    <backend>sql-backend-azure</backend> 
                    <api>sql-api-azure</api> 
                  </Behaviours> 
                </Options> 
              </Internet> 
            </Connections> 
          </Options> 
        </DefaultConnectionFactory> 
      </Services> 
    </Publishing> 
  </Sitecore> 
</Settings> 

http://topaz.codeplex.com/


Sitecore Publishing Service Installation and Configuration Guide  

57 

 57 

5.10 Reporting Field Changes 
By default, the Publishing Service reports on field changes that occur on a number of standard fields. The field 
changes are available in the publishEndResultBatch pipeline that has a processor with args of 
Sitecore.PublishEndResultBatchArgs in the Sitecore.PublishEndResultBatchArgs 
processor. 

The ReportPublishFieldsResolver service in the sc.publishing.services.xml 
configuration file specifies the fields in which changes will be reported. You can add additional fields into the 
ReportPublishFieldResolver service, for example: 

<ReportPublishFieldsResolver> 
<options> 
     <AdditionalInvariantItemFieldsIds> 
          <f1>Field Guid Here</f1> 
          <f2>Field Guid Here</f2> 
      </AdditionalInvariantItemFieldsIds> 
     <AdditionalLanguageVariantFieldsIds> 
          <f1>Field Guid Here</f1> 
          <f2>Field Guid Here</f2> 
     </AdditionalLanguageVariantFieldsIds> 
     <AdditionalVariantFieldsIds> 
          <f1>Field Guid Here</f1> 
          <f2>Field Guid Here</f2> 
     </AdditionalVariantFieldsIds> 
</options> 
</ReportPublishFieldsResolver> 

 



Sitecore Publishing Service 4.0.0 

 

 58 

5.11 Logging Configuration 
The Microsoft Extensions Logging framework is used throughout the system to emit log messages.  

For more information, see: https://github.com/aspnet/Logging. 

Serilog is the default logging provider configured in the Host. This comes with a large number of sinks that 
can be configured for many use cases. For more information, see: 
https://github.com/serilog/serilog/wiki/Provided-Sinks.   

Note  
By default, a single file sink is configured. 

The Microsoft Extensions Logging framework is based on the concept of logging levels, which are defined 
below in the order of significance: 

• Trace 

• Debug 

• Information 

• Warning 

• Error 

• Critical 

• None 

Each component that emits log messages in the system, by convention, does this through a logger object 
named with the fully qualified class name of the owning component. Therefore, there are many named 
loggers across the system that each emit log messages on any of the above levels. 

5.11.1 Log configuration location 
You can find the default logging configuration in the config/sitecore/sc.logging.xml file of the 
publishing service installation location. 

You can see an example of a logging override configuration in the config/development/ 
sc.logging.development.xml file of the publishing service installation location. 

5.11.2 Configuring Logger Levels (Filters) 
The level of messages that each named logger is permitted to emit can be specified in the configuration.   

The Filters section in the example below, specifies the minimum logging level for all loggers that have a 
name with a matching prefix. 

For example, <Sitecore>Information</Sitecore> specifies that only log messages at the 
Information level or above will be emitted by loggers created in the Sitecore namespace. 

• To enable logging at other levels throughout the system, add additional entries, for example, 
<Sitecore.Framework.Publishing.DataPromotion>Debug</Sitecore.Framewor
k.Publishing.DataPromotion>  

If no matched filter is found the Default log level filter is used: 

<Settings> 
 <Sitecore> 
  <Publishing> 
   <Logging> 
    <Filters> 
     <Sitecore>Information</Sitecore> 
     <Default>Warning</Default> 
    </Filters> 
   </Logging> 

https://github.com/aspnet/Logging
https://github.com/serilog/serilog/wiki/Provided-Sinks


Sitecore Publishing Service Installation and Configuration Guide  

59 

 59 

  </Publishing> 
 </Sitecore> 
</Settings> 

• To customize the log levels, you override or add additional log filters. The following example adds a 
configuration for types in the My.Custom.Code namespace to log at the Debug level. It also changes 
loggers in the Sitecore.Framework.Schedeling namespace to log at the Debug level: 

<Settings> 
 <Sitecore> 
  <Publishing> 
   <Logging> 
    <My.Custom.Code>Debug</My.Custom.Code> 
    <Sitecore.Framework.Scheduling>Debug</Sitecore.Framework.Scheduling> 
   </Logging> 
  </Publishing> 
 </Sitecore> 
</Settings> 

5.11.3 Configuring Serilog 
The Serilog provider can be configured with many sinks. This configuration the default logging configuration 
for Serilog: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Logging> 
        <Filters> 
          …         
       </Filters> 
  
        <Serilog> 
          <WriteTo>           
            <DefaultLogger> 
              <Name>RollingFile</Name> 
              <Args> 
                <pathFormat>logs\Publishing-{Date}.log</pathFormat> 
              </Args> 
            </DefaultLogger>             
          </WriteTo> 
        </Serilog> 
  
      </Logging> 
      </Publishing> 
  </Sitecore> 
</Settings> 

5.11.4 Console and File Sinks 
Serilog supports many different sinks, each sink type is delivered in its own Nuget package. The Publishing 
Service comes with the console and file sinks included. 

The default configuration above tells Serilog to put all logs produced by the service into a logs folder stored at 
the application install path, and log messages are persisted to a log file called Publishing-<date>.log, where 
<date> is the current date.   

Logs files are treated as rolling files, where logging information is added to the file with the current date. If 
the log file does not exist, it is created. 

You can patch in more sinks with other configuration files or replace the default one. The 
config/development/sc.logging.development.xml file adds a console logger. For example: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Logging> 
         
        <Filters> 
          … 
        </Filters> 



Sitecore Publishing Service 4.0.0 

 

 60 

         
        <Serilog> 
          <WriteTo> 
            <DevLogger> 
              <Name>LiterateConsole</Name> 
            </DevLogger> 
          </WriteTo> 
        </Serilog> 
         
      </Logging> 
    </Publishing> 
  </Sitecore> 
</Settings> 

For more information about how to provide the arguments to define the parameters for these sinks, see 
https://github.com/serilog/serilog-settings-configuration.  

For more information about the console and file logging sinks, see https://github.com/serilog/serilog-sinks-
literate and https://github.com/serilog/serilog-sinks-rollingfile. 

5.11.5 Other Sinks 
Serilog also supports other persistence stores for log messages. 

To configure sinks other than Console and Rolling File for the Publishing Service: 

1. Copy all the DLLs required by the sink into the Publishing Service Host directory that contains all the 
Service DLLs. 

2. Specify the DLL name in a using element in the Serilog configuration. 

3. Configure the sink in the WriteTo section in the same way as Console and Rolling File. 

Here is an example of how the Azure DocumentDB can be used to store log messages: 

     <Serilog> 
          <Using> 
            <DocumentDb>Serilog.Sinks.AzureDocumentDB</DocumentDb> 
          </Using> 
          <WriteTo> 
            <AzureLogger> 
              <Name>AzureDocumentDB</Name> 
              <Args> 
                <endpointUri>…azure document db endpoint…</endpointUri> 
                <authorizationKey>…authorization key…</authorizationKey> 
                <timeToLive>3600</timeToLive> 
              </Args> 
            </AzureLogger> 
          </WriteTo> 
          <WriteTo> 
            <DevLogger> 
              <Name>LiterateConsole</Name> 
            </DevLogger> 
          </WriteTo> 
        </Serilog> 

One advantage of persisting logs to a document based database like the Azure DocumentDB, is that each log 
message is persisted as an object, with properties that describe the context in which the log message was 
emitted. Log messages can then be queried dynamically. 

https://github.com/serilog/serilog-settings-configuration
https://github.com/serilog/serilog-sinks-literate
https://github.com/serilog/serilog-sinks-literate
https://github.com/serilog/serilog-sinks-rollingfile
https://github.com/serilog/serilog/wiki/Provided-Sinks


Sitecore Publishing Service Installation and Configuration Guide  

61 

 61 

5.12 Excluding Items from Automatic Deletion from the Target Databases 
When you publish all items, the Publishing Service deletes any items in the target databases that do not 
appear in the source database. 

If there are sections of your content tree or items based on a specific template, for example, user generated 
content or content added from other sources, that you do not want removed automatically from the target 
databases, you can create a configuration file that contains the relevant item IDs of the sections and 
templates. 

You create the configuration file using the patching mechanism.   

• Under the IgnoreChildrenOfItemIds node, add the item IDs of sections that you want to 
keep in the target databases.  

• Under the IgnoredTemplateIds node, add the item IDs of the templates that you want to keep 
in the target databases. In this way, the items based on the specified templates will not be removed 
from the target databases. 

For example: 

<Settings>  
  <Sitecore>  
    <Publishing>  
      <Services>  
        <IncrementalPublishHandler>  
          <Options>  
            <IgnoreChildrenOfItemIds>  
              <UserGeneratedContent>{b00accaf-ce86-408e-b606-
4120356fb8cf}</UserGeneratedContent>  
              <OtherContentSection>{a9173544-5664-4549-ad02-
06d5586cb855}</OtherContentSection>  
            </IgnoreChildrenOfItemIds>  
            <IgnoredTemplateIds>  
              <UserGeneratedContent>{a9173544-5664-4549-ad02-
06d5586cb855}</UserGeneratedContent>  
            </IgnoredTemplateIds>  
          </Options>  
        </IncrementalPublishHandler>  
        <TreePublishHandler>  
          <Options>  
            <IgnoreChildrenOfItemIds>  
              <UserGeneratedContent>{b00accaf-ce86-408e-b606-
4120356fb8cf}</UserGeneratedContent>  
              <OtherContentSection>{a9173544-5664-4549-ad02-
06d5586cb855}</OtherContentSection>  
            </IgnoreChildrenOfItemIds>  
            <IgnoredTemplateIds>  
              <UserGeneratedContent>{a9173544-5664-4549-ad02-
06d5586cb855}</UserGeneratedContent>  
            </IgnoredTemplateIds>  
          </Options>  
        </TreePublishHandler>  
      </Services>  
    </Publishing>  
  </Sitecore>  
</Settings> 



Sitecore Publishing Service 4.0.0 

 

 62 

5.13 Configuring the Publishing Service to use Azure Application Insights 
The Publishing Service supports integration with Azure Application Insights. Application Insights provides a 
lot of information about your instances of the Sitecore Publishing Service.  

To get the most out of the data that you are capturing with Application Insight, review the Microsoft Azure 
Application Insights documentation. 

Note 
The Publishing Service only uses the Azure Application Insights for telemetry data, such as server response 
times, resource utilization, number of requests, and so on. The Publishing Service logs are written to the log 
files that are defined in the Publishing Service configuration. 

5.13.1 Prerequisites 
To configure the Publishing Service to use Azure Application Insights, you must have a Microsoft Azure 
subscription and at least one Application Insights instrumentation key from an active Application Insights 
service.  

To learn how to create an Application Insights service, see to the Microsoft Azure documentation. 

When you have a running Application Insights service, you can see the instrumentation key in the Essentials 
panel.  

 

5.13.2 Configure the Publishing Service to use Application Insights 
To configure the Publishing Service to use Application Insights, you edit the appsettings.json file in the 
root directory of the Publishing Service.  

For example, if you have installed the Publishing Service to C:\inetpub\wwwroot\SitecorePublishingService, 
then the path to your appsettings.json file is 
C:\inetpub\wwwroot\SitecorePublishingService\appsettings.json. 

The file must contain the following code, where you populate the value of the InstrumentationKey property 
with the one from your own Application Insights service. 

{ 
    "ApplicationInsights": { 
        "InstrumentationKey": "" 
    } 
} 

You can also supply the configuration files for different environments using different instrumentation keys. 
For example, if you want to use a different instrumentation key in a development environment, then you can 
create an appsettings.development.json file in the root directory of the Publishing Service and use 
a different value for the InstrumentationKey property.  

Note 
The appsettings.<environment>.json file that you use matches the environment that is configured 
for the Publishing Service. For more information, see the section about Host Configuration Options. 

https://docs.microsoft.com/en-us/azure/application-insights/
https://docs.microsoft.com/en-us/azure/application-insights/
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-dotnetcore-quick-start


Sitecore Publishing Service Installation and Configuration Guide  

63 

 63 

5.13.3 Adding Serilog.Sinks.ApplicationInsights 
The Sitecore Publishing Service uses the Serilog logging framework to generate log information at runtime. 
Microsoft Application Insights can also be configured to log information on the Azure platform. Serilog also 
provides the ability to communicate with Microsoft Application Insights. By combining the two, the 
Publishing Service can publish structured logs to Application Insights, enabling management of logs within 
the Azure platform. 

When Application Insights is configured, you must configure Serilog to send logging formation to Application 
Insights by adding an additional library to your Publishing Service. 

To configure Serilog to send logging formation to Application Insights: 

1. Download Serilog.Sinks.ApplicationInsights version 2.6.0 from nuget.org. 

2. Open the nuget package and copy the 
\lib\net45\Serilog.Sinks.ApplicationInsights.dll file into the root folder of the 
Publishing Service that you have deployed. 

3. Create a configuration file called sc.customlogging.xml and add the following: 

<Settings> 
  <Sitecore> 
    <Publishing> 
      <Logging> 
        <Serilog> 
          <WriteTo> 
            <AppInsightsLogger> 
              <Name>ApplicationInsightsTraces</Name> 
              <Args> 
                <instrumentationKey>c68d16ec-4df4-4d7a-85a3-
632687961c82</instrumentationKey> 
              </Args> 
            </AppInsightsLogger> 
          </WriteTo> 
        </Serilog> 
      </Logging> 
    </Publishing> 
  </Sitecore> 
</Settings> 

4. Update the <instrumentationKey> to your own value 

5. Add this configuration file to the Publishing Service \config\global folder 

Perform a few publishes and within a few minutes you’ll be able to see the trace entries that are logged. 

 



Sitecore Publishing Service 4.0.0 

 

 64 

5.14 Troubleshooting 
If you receive an error where the Internet Information Services (IIS) cannot read the application configuration, 
ensure you have installed all the prerequisites. 

• If you receive a 502 - Bad Gateway error when you visit your site, check the logs for details.  

• After fixing any errors, restart your application pool and try again. 



Sitecore Publishing Service Installation and Configuration Guide  

65 

 65 

Chapter 6  

High Availability Configuration of the Sitecore 

Publishing Service 

This chapter describes how you can support high availability requirements by deploying 
multiple instances of the Publishing Service to use the same database. 

• Introduction 

• On premise 

• Azure 

• Configuration (Advanced) 

• Supported Deployment Models 



Sitecore Publishing Service 4.0.0 

 

 66 

6.1 Introduction 
When multiple Publishing Service instances are running, all of them can receive web-API calls. However, only 
one instance will have the job system active and therefore perform the actual publishing jobs. If the active 
instance fails, another instance will become active. This happens automatically because of a heartbeat 
protocol that is implemented via the service database.  

Each service instance will request ownership of a logical lock, stored in the database, on a given schedule. 
Only one instance at a time can own this lock. Ownership is obtained if either there is no lock existing already, 
or if the current owner has not renewed the lock within a configured lifetime threshold. With the default 
settings, the maximum time taken to failover to a new active instance is 15 seconds, the minimum is 10 
seconds. 

6.1.1 Workflow 
The following steps describe the workflow of when more than one Publishing Service is running against the 
same set of databases: 

1. The service instance gets assigned a random unique name at start up, or the name can be specified 
explicitly in the configuration. The algorithm for generating the service name can be replaced by 
providing another implementation of the IServiceInformation interface.  

For more information about assigning a specific name to a server instance, see the section On 
premise.  

2. When the service is started, the heartbeat protocol will kick off and the first instance that can access 
the Publishing_ActivationLock table will be set as active to enable the job system. 

3. All the other instances will remain inactive, they will be able to receive API calls, but the jobs will only 
run on the active instance. For example, if a job is enqueued using an inactive instance, the active 
instance will pick it up within 10 seconds. 

4. If the active instance fails, it will stop renewing the activation lock in the database. After the lock 
lifetime has passed, another inactive instance will be able to acquire the lock, and hence set itself as 
an active instance. It will then enable its job system to start processing the jobs in the queue. 

5. Any job that was running when the previously active instance crashed will be automatically started 
by the new active instance. 



Sitecore Publishing Service Installation and Configuration Guide  

67 

 67 

6.2 On premise 
In a high-availability environment, multiple instances of the Publishing Service need to be running behind a 
load balancer. 

No special configuration is needed. However, each instance can be configured with a unique name. The 
configuration element is: 

<Settings> 
  <Sitecore> 
   <Publishing> 
    <InstanceName>${SITECORE_InstanceName}</InstanceName> 
   </Publishing> 
  </Sitecore> 
</Settings> 

The instance name can be assigned through configuration, an environment variable, or a command line 
parameter. The instance name is used in logging and in the Database Publishing_ActivationLock table that 
shows the current active instance. 



Sitecore Publishing Service 4.0.0 

 

 68 

6.3 Azure 
The Publishing Service can be installed as an Azure Application Service. There is no configuration needed in 
order to enable the high-availability functionality.  

To install the Publishing Service as an Azure Application Service: 

1. In the Azure portal, select a tier that allows you to use scaled-out configuration, for example, Tier B1 
where you can have up to three instances. 

2. Under Settings, click the Scale out option, and then drag the slider to specify the number of 
instances. 

 

 



Sitecore Publishing Service Installation and Configuration Guide  

69 

 69 

6.4 Configuration (Advanced) 
The Publishing Service comes with defaults for the activation strategy. However, there are some parameters 
that can be configured if it is found that the active instance is being switched by mistake. 

The following options can be configured: 

• LockAttemptIntervalInSeconds – specify the interval in seconds that the service should use 
to obtain the activation lock. 

• LockRenewalIntervalInSeconds – if the service already owns the lock, specify the interval 
in seconds that the service should use to renew the activation lock. 

• LockLifetimeInSeconds – specify the interval in seconds after which the service should lose 
the activation lock if it hasn't renewed it, for example, in the situation where the service is inactive. 

Important  
Each instance must be configured with the same settings. 



Sitecore Publishing Service 4.0.0 

 

 70 

6.5 Supported Deployment Models 
The high availability (HA) of the publishing service means that it can be used in the following configurations: 

• Running on Azure as a scaled-out application service. 

• Running multiple instances on multiple computers or VMs. 

• Running multiple instances on the same machine. While this is not technically a high-availability 
setup, it can benefit testing.  
 



Sitecore Publishing Service Installation and Configuration Guide  

71 

 71 

Chapter 7  

Publishing with the Sitecore Publishing Module 

This chapter is for content authors that need to know how to publish a website or an item 
with the Sitecore Publishing module.  

This chapter contains the following sections: 

• The Sitecore Publishing Module 

• Publishing an Item  

• Publishing a Website 

• Publish all Items 

• The Sitecore Commerce Server Connect Publishing Extension Package 



Sitecore Publishing Service 4.0.0 

 

 72 

7.1 The Sitecore Publishing Module 
In the Sitecore Publishing module, you can choose to publish the entire website or a single item: 

• Item publishing – publishes the item you select in either the Content Editor or the Experience Editor. 
The item can only be published if all its ancestors have been published.  

When you publish an item, you can choose to include all its subitems and related items.  

• Site publishing – publishes all the changes that have been made on your entire website since the last 
time the website was published. You can publish a site from the Content Editor or from the Sitecore 
Desktop. 

• Publish all items – when you publish all items, you have the following two publishing options:   

o Publish the items that in the Master database are different from the equivalent item in the target 
database. 

o Publish all the items in your Sitecore installation regardless of when the items were last 
published. This requires a considerable amount of time and resources. 

Note 
Only users with the appropriate access rights can perform this type of publishing. 

7.1.1 The Publishing Dashboard 
The Publishing Dashboard gives you an overview of all the active, queued, and recent publishing jobs: 

 

• Active jobs – the publishing jobs that are currently being published. 

• Queued jobs – the publishing jobs that are waiting to be published. 

• Recent jobs – the most recent publishing jobs that have been processed. 



Sitecore Publishing Service Installation and Configuration Guide  

73 

 73 

To see the details of a recent publishing job or a queued publishing job, click the relevant job in one of the 
lists. 

 

Note 
There are no details to view for active publishing jobs. 

7.1.2 Publishing Viewer 
Use the Publishing Viewer to get an overview of when the various versions of an item are publishable. 

To open the Publishing Viewer for an item: 

1. In the Content Editor, select the relevant item. 

2. On the Publish tab, in the Publish group, click Publishing Viewer. 

  



Sitecore Publishing Service 4.0.0 

 

 74 

3. In the Publishing Viewer dialog box, specify a start and end date to see if the items’ versions are 
publishable during that period. 

 

 



Sitecore Publishing Service Installation and Configuration Guide  

75 

 75 

7.2 Publishing an Item  
When you want to publish a single item to your website in one or more language versions, you perform an 
item publish from the Content Editor or the Experience Editor. 

Note 
To get an overview of when the different versions of an item are publishable, in the Content Editor, on the 
Publish tab, click Publishing Viewer.  

To publish a single item: 

1. Open the Publish dialog box: 

o In the Content Editor, select the item that you want to publish. On the Publish tab, in the 
Publish group, click the Publish drop-down arrow, and then select Publish item. 

o In the Experience Editor, navigate to the page that you want to publish, and then on the Home 
tab, in the Publish group, click Publish. 

2. In the Publish item dialog box, verify the item details and select:  

o Publish subitems to publish the current item and all its subitems. 

o Publish related items to publish the current item and all its related items, such as clone 
references, media references, and alias references. 

 

3. Select the language versions of the item that you want to publish and the targets that you want to 
publish the item to.  



Sitecore Publishing Service 4.0.0 

 

 76 

4. To move the publishing job to the publishing queue, click Publish. 

 

5. To get an overview of the active, queued, and recent publishing jobs, click Go to the Publishing 
Dashboard. 

 



Sitecore Publishing Service Installation and Configuration Guide  

77 

 77 

7.3 Publishing a Website 
When you perform a site publish, you only publish the items that have changed since the site was last 
published. 

Note 
Users with sufficient access rights can publish all the items in your Sitecore installation at the same time 
regardless of when they were last published. This requires a considerable amount of time and resources. To 
publish all items, in the Publishing Dashboard click Publish all items.  

To publish the changes made to your website: 

1. In the Content Editor, on the Publish tab, in the Publish group, click the Publish drop-down arrow, 
and click Publish site. 

 

Note 
You can also perform a site publish from the Sitecore Start menu. 

2. In the Publish dialog, select the language versions that you want to publish and the targets that you 
want to publish the site to. 

 



Sitecore Publishing Service 4.0.0 

 

 78 

3. To move the publishing job to the publishing queue, click Publish.  

 

4. To see an overview of the active, queued, and recent publishing jobs, click Go to the Publishing 
Dashboard. 



Sitecore Publishing Service Installation and Configuration Guide  

79 

 79 

7.4 Publish all Items 
In the Publishing Dashboard, if you have the appropriate access rights, you can: 

• Publish all the items in the Master database that are different from the corresponding items in the 
target database. 

• Publish all the items in your Sitecore installation regardless of when the items were last published.  

When you publish all the items, the database and the publishing service are subject to a much larger 
load than usual and this requires a considerable amount of time and resources. 

Note 
To grant a specific security role permission to publish all items, you must configure the 
Sitecore.Publishing.Service.Config file. For more information, see the section Security  

To publish items from the Publishing Dashboard:   

1. In the Publishing Dashboard, click Publish all items. 

Note 
To see the Publish all items button, users must have the appropriate access rights. 

 

2. In the Publish all items dialog box: 

o To publish all the items in your installation regardless of when they were last published, select 
the Full republish check box.  

o To publish all the items in the Master database that are different from the corresponding items in 
the selected target database, clear the Full republish check box. 

o To publish a large number of items or to publish to a new publishing target, select the Rebuild 
web indexes and clear all data caches check box. 

This clears the data level caches that contain references to the items that are published and re-
builds the web indexes. 



Sitecore Publishing Service 4.0.0 

 

 80 

3. Select the language versions that you want to publish and the publishing targets that you want to 
publish the items to. 

4. To move the publishing job to the publish queue, click Publish.  

 

5. To see an overview of the active, queued, and recent publishing jobs, close the Publish all items 
dialog box. 



Sitecore Publishing Service Installation and Configuration Guide  

81 

 81 

7.5 The Sitecore Commerce Server Connect Publishing Extension 
Package 

If you have the Sitecore Commerce Server Connect Publishing extension package installed, you can start 
staging projects directly from the Site publish dialog or the Item publish dialog and execute staging and 
publishing in parallel. 

To install the extension package: 

1. Download the Sitecore Commerce Server Connect Publishing 
Extensions.8.2.update package.  

2. In a browser, navigate to http://<your 
site>/sitecore/admin/UpdateInstallationWizard.aspx and then follow the steps 
in the installation wizard. 

Note 
When the installation has finished, you see a summary of the installation. The potential problems that are 
listed can generally be ignored. 

To start a staging project when you publish:  

1. In the Site publish or Item publish dialog, click the Staging tab. 

2. In the Idle projects list, select the projects that you would like to start and then click Start staging. 

 

A notification informs you that the projects have started successfully and the Idle projects and the 
Started projects lists are updated accordingly. 

3. If you want to move the publishing job to the publishing queue, click Publish, otherwise click Close. 

4. To view the status of the started staging projects, refresh the lists in the publishing dialog.  

5. If you have closed the publishing dialog, just open the dialog again to see the updated status of the 
projects. Alternatively, you can open the Commerce Server Staging Manager. 

http://dev.sitecore.net/


Sitecore Publishing Service 4.0.0 

 

 82 

Chapter 8  

Upgrading from Version 2.x to Version 4.0.0 

You can upgrade to Sitecore Publishing Service 4.0.0 from version 2.x. 

Note 
To upgrade the Sitecore Publishing Service to version 4.0.0, you must first upgrade Sitecore 
Experience Platform to version 9.1.0 or later. Before you upgrade from Sitecore XP 8.2 to version 9.1, 
you must disable the Sitecore Publishing Service. For more information, view this article.  

This chapter describes how to upgrade to Sitecore Publishing Service 4.0.0. 

• Upgrading the Publishing Service  

• Upgrade the Publishing Module (CM Server) 

• Upgrade the Publishing Module (CD servers) 

https://kb.sitecore.net/articles/154093


Sitecore Publishing Service Installation and Configuration Guide  

83 

 83 

8.1 Upgrading the Publishing Service  
Before you upgrade to a new version of the Publishing Service, create a backup of the existing Publishing 
Service directory. 

To upgrade the Publishing Service: 

1. Ensure that you meet the prerequisites for the Publishing Service. 

2. Stop the IIS application pool for the installed Publishing Service instance. 

3. Extract the content of the Sitecore Publishing Service 4.0.0.zip file to the existing 
Publishing Service directory and replace all the files. 

4. Use the Sitecore.Framework.Publishing.Host configuration and the 
setconnectionstring command to reconfigure your connection string.  

5. Start the IIS application pool again. 

 



Sitecore Publishing Service 4.0.0 

 

 84 

8.2 Upgrade the Publishing Module (CM Server) 
To upgrade the Publishing Module on your CM server: 

1. On the Sitecore Downloads Page, download the installation package for the module. 

2. On the Sitecore Launchpad, click Control Panel, and in the Administration section, click Install a 
package.  

The Install a Package wizard guides you through the installation process. 

3. When the wizard prompts you, choose to overwrite files. 

4. When the wizard displays the message: Role 'sitecore\Publishing Service Administrator' will not be 
installed since it already exists, click Continue.  

5. Copy your custom patch configuration files from App_Config/Include to 
App_Config/Modules/PublishingService. 

6. In the App_Config/Include folder, delete all the Sitecore.Publishing.Service.* 
configuration files and your custom patch files. 

7. Select Restart the Sitecore Client option and close the wizard. 

https://dev.sitecore.net/


Sitecore Publishing Service Installation and Configuration Guide  

85 

 85 

8.3 Upgrade the Publishing Module (CD servers) 
To upgrade the Publishing Module on your CD servers: 

1. Copy and replace the following files from the \files\bin directory in the installation package to 
each of your CD servers: 

o Sitecore.Publishing.Service.dll  

o Sitecore.Publishing.Service.Abstractions.dll  

o Sitecore.Publishing.Service.Delivery.dll  

o Sitecore.Framework.Conditions.dll  

2. From the App_Config/Modules/PublishingService directory in the installation package, 
copy the Sitecore.Publishing.Service.Delivery.config file to each of your CD 
servers.  

3. Copy your custom patch configuration files from the App_Config/Include folder to 
App_Config/Modules/PublishingService. 

4. In the App_Config/Include folder, delete all the Sitecore.Publishing.Service.* 
configuration files and your custom patch files. 

 

 



Sitecore Publishing Service 4.0.0 

 

 86 

Chapter 9  

Upgrading from Version 3.1.x to Version 4.0.0 

You can upgrade to Sitecore Publishing Service 4.0.0 from version 3.1.x. 

This chapter contains the following sections:  

• Upgrading the Publishing Service  

• Upgrade the Publishing Module (CM Server)  

• Upgrade the Publishing Module (CD servers)  
 

 



Sitecore Publishing Service Installation and Configuration Guide  

87 

 87 

9.1 Upgrading the Publishing Service 
Before you upgrade to a new version of the Publishing Service, make sure you create a backup of the existing 
Publishing Service directory.  

To upgrade the Publishing Service:  

1. Ensure that you meet the prerequisites for the Publishing Service. 

2. Stop the IIS application pool for the installed Publishing Service instance.  

3. Extract the content of the Sitecore Publishing Service 4.0.0.zip file to the existing 
Publishing Service directory and replace all the files.  

4. Use the Sitecore.Framework.Publishing.Host configuration and the 
setconnectionstring command to reconfigure your connection string.  

5. Start the IIS application pool again.  

  



Sitecore Publishing Service 4.0.0 

 

 88 

9.2 Upgrade the Publishing Module (CM Server)  
To upgrade the Publishing Module on your CM server: 

1. On the Sitecore Developer Portal, download the installation package for the relevant module.  

2. On the Sitecore Launchpad, click Control Panel, and in the Administration section, click Install a 
package.  

The Install a Package wizard guides you through the installation process.  

3. When the wizard prompts you, choose to overwrite files. 

4. When the wizard displays the message: Role 'sitecore\Publishing Service Administrator' will not be 
installed since it already exists, click Continue.   

5. Select Restart the Sitecore Client option and close the wizard.  

 



Sitecore Publishing Service Installation and Configuration Guide  

89 

 89 

9.3 Upgrade the Publishing Module (CD servers)  
To upgrade the Publishing Module on your CD servers, copy and replace the following files from the 
\files\bin folder in the installation package to each of your CD servers:  

• Sitecore.Publishing.Service.dll  

• Sitecore.Publishing.Service.Abstractions.dll  

• Sitecore.Publishing.Service.Delivery.dll  


	Chapter 1  Introduction
	1.1 About the Publishing Service Module
	1.1.1 Publishing Service Concepts


	Chapter 2  Installing the Sitecore Publishing Service
	2.1 Prerequisites
	2.1.1 Sitecore Publishing Service Requirements
	2.1.2 Sitecore Publishing Module Requirements

	2.2 Manual Installation
	2.3 Scripted Installation
	2.3.1 Scaled Environment Considerations


	Chapter 3  Sitecore Publishing Service Commands
	3.1 Introduction
	3.1.1 General Execution Format
	3.1.2 Logs

	3.2 Web Command
	3.2.1 Host Configuration Options
	3.2.2 Custom Configuration Values

	3.3 IIS Command
	3.3.1 Install Options

	3.4 Configuration Command
	3.4.1 Set Commands
	3.4.2 SetConnectionString Command

	3.5 Schema Command
	3.5.1 Upgrade
	3.5.2 Downgrade
	3.5.3 Reset
	3.5.4 List

	3.6 Diagnostics Command
	3.6.1 Revision


	Chapter 4  Installing and Configuring the Sitecore Publishing Module
	4.1 Installing the Sitecore Publishing Module
	4.2 Post-installation Configuration
	4.2.1 Service Endpoints
	4.2.2 Cache and Index Configuration

	4.3 Recovery
	4.4 Publisher Operations Service
	4.5 Security
	4.5.1 Granting Permission to Perform a Full Republish

	4.6 Operation Emitter
	4.7 Events

	Chapter 5  Configuring the Sitecore Publishing Service
	5.1 Publishing Targets
	5.2 Configuration Sources
	5.2.1 Configuration File Naming

	5.3 Adding Configuration Values
	5.3.1 Overriding Configuration Values
	5.3.2 Referencing Configuration Values

	5.4 Configuring Options
	5.4.1 DatabaseConnectionOptions
	5.4.2 PublishHostOptions
	5.4.3 PublishJobHandlerOptions
	5.4.4 PromoterOptions
	5.4.5 PromotionCoordinatorOptions

	5.5 Database Configuration
	5.5.1 Connection Strings
	5.5.2 DefaultConnectionFactory
	5.5.3 StoreFactory
	5.5.4 StoreFeatureLists
	5.5.5 Custom Data Providers

	5.6 Schema Configuration
	5.6.1 The Deployment Map
	5.6.2 Schemas
	5.6.3 Validating Schemas

	5.7 Task Scheduling
	5.7.1 Task Configuration
	PublishTask
	PublishJobCleanUpTask

	5.7.2 Defining a Task
	5.7.3 Defining a Trigger

	5.8 Content Availability
	5.8.1 Configure Content Availability on the CD Server
	Publishing Service Setup


	5.9  Transient Error Tolerance for SQL Azure
	5.9.1 Connection Behaviors
	5.9.2 Default Configuration
	5.9.3 SQL Azure Configuration

	5.10 Reporting Field Changes
	5.11 Logging Configuration
	5.11.1 Log configuration location
	5.11.2 Configuring Logger Levels (Filters)
	5.11.3 Configuring Serilog
	5.11.4 Console and File Sinks
	5.11.5 Other Sinks

	5.12 Excluding Items from Automatic Deletion from the Target Databases
	5.13 Configuring the Publishing Service to use Azure Application Insights
	5.13.1 Prerequisites
	5.13.2 Configure the Publishing Service to use Application Insights
	5.13.3 Adding Serilog.Sinks.ApplicationInsights

	5.14 Troubleshooting

	Chapter 6  High Availability Configuration of the Sitecore Publishing Service
	6.1 Introduction
	6.1.1 Workflow

	6.2 On premise
	6.3 Azure
	6.4 Configuration (Advanced)
	6.5 Supported Deployment Models

	Chapter 7  Publishing with the Sitecore Publishing Module
	7.1 The Sitecore Publishing Module
	7.1.1 The Publishing Dashboard
	7.1.2 Publishing Viewer

	7.2 Publishing an Item
	7.3 Publishing a Website
	7.4 Publish all Items
	7.5 The Sitecore Commerce Server Connect Publishing Extension Package

	Chapter 8  Upgrading from Version 2.x to Version 4.0.0
	8.1 Upgrading the Publishing Service
	8.2 Upgrade the Publishing Module (CM Server)
	8.3 Upgrade the Publishing Module (CD servers)

	Chapter 9  Upgrading from Version 3.1.x to Version 4.0.0
	9.1 Upgrading the Publishing Service
	9.2 Upgrade the Publishing Module (CM Server)
	9.3 Upgrade the Publishing Module (CD servers)


