

Sitecore Publishing Service 4.1.0 Sitecore Publishing Service Installation and Configuration Guide Rev: March 19, 2021

Sitecore Publishing

Service Installation

and Configuration

Guide
Sitecore Publishing Service 4.1.0

How to install and configure the Sitecore Publishing Service

Sitecore Publishing Service Installation and Configuration Guide

2

© Copyright 2019, Sitecore - all rights reserved.

Table of Contents

Chapter 1 Introduction .. 4

1.1 About the Publishing Service Module .. 5

1.1.1 Publishing Service Concepts ... 6

Chapter 2 Installing the Sitecore Publishing Service ... 8

2.1 Prerequisites ... 9

2.1.1 Sitecore Publishing Service Requirements ... 9

2.2 Manual Installation ... 10

2.3 Scripted Installation .. 12

2.3.1 Scaled Environment Considerations .. 13

Chapter 3 Sitecore Publishing Service Commands .. 14

3.1 Introduction ... 15

3.1.1 General Execution Format .. 15

3.1.2 Logs .. 15

3.2 Web Command ... 16

3.2.1 Host Configuration Options .. 16

3.2.2 Custom Configuration Values ... 17

3.3 IIS Command ... 19

3.3.1 Install Options ... 19

3.4 Configuration Command ... 21

3.4.1 Set Commands .. 21

3.4.2 SetConnectionString Command ... 22

3.5 Schema Command ... 23

3.5.1 Upgrade ... 23

3.5.2 Downgrade .. 24

3.5.3 Reset ... 24

3.5.4 List .. 25

3.6 Diagnostics Command ... 26

3.6.1 Revision .. 26

Chapter 4 Configuring the Sitecore Publishing Service ... 27

4.1 Publishing Targets .. 28

4.2 Configuration Sources ... 30

4.2.1 Configuration File Naming .. 30

4.3 Adding Configuration Values .. 31

4.3.1 Overriding Configuration Values .. 31

4.3.2 Referencing Configuration Values .. 32

4.4 Configuring Options ... 33

4.4.1 DatabaseConnectionOptions .. 33

4.4.2 PublishHostOptions ... 33

4.4.3 PublishJobHandlerOptions .. 34

4.4.4 PromoterOptions ... 35

4.4.5 PromotionCoordinatorOptions .. 36

4.5 Database Configuration ... 37

4.5.1 Connection Strings ... 37

4.5.2 DefaultConnectionFactory .. 37

4.5.3 StoreFactory .. 38

4.5.4 StoreFeatureLists .. 39

4.5.5 Custom Data Providers .. 40

Sitecore Publishing Service Installation and Configuration Guide

3

© Copyright 2019, Sitecore - all rights reserved.

4.6 Schema Configuration ... 42

4.6.1 The Deployment Map .. 43

4.6.2 Schemas ... 43

4.6.3 Validating Schemas .. 43

4.7 Task Scheduling .. 45

4.7.1 Task Configuration ... 45

4.7.2 Defining a Task.. 45

4.7.3 Defining a Trigger ... 46

4.8 Content Availability ... 47

4.8.1 Configure Content Availability on the CD and CM Servers ... 47

4.9 Transient Error Tolerance for SQL Azure .. 49

4.9.1 Connection Behaviors .. 49

4.9.2 Default Configuration .. 50

4.9.3 SQL Azure Configuration ... 51

4.10 Reporting Field Changes .. 53

4.11 Logging Configuration .. 54

4.11.1 Log configuration location .. 54

4.11.2 Configuring Logger Levels (Filters) ... 54

4.11.3 Configuring Serilog ... 55

4.11.4 Console and File Sinks ... 56

4.11.5 Other Sinks .. 56

4.12 Excluding Items from Automatic Deletion from the Target Databases 58

4.13 Configuring the Publishing Service to use Azure Application Insights 59

4.13.1 Prerequisites ... 59

4.13.2 Configure the Publishing Service to use Application Insights 59

4.13.3 Adding Serilog.Sinks.ApplicationInsights .. 60

4.14 Troubleshooting.. 62

Chapter 5 High Availability Configuration of the Sitecore Publishing Service 63

5.1 Introduction ... 64

5.1.1 Workflow .. 64

5.2 On premise .. 65

5.3 Azure .. 66

5.4 Configuration (Advanced) .. 67

5.5 Supported Deployment Models ... 68

Chapter 6 Publishing Service API .. 69

6.1 API documentation ... 70

Chapter 7 Upgrading to Version 4.1.0 ... 71

7.1 Upgrading the Publishing Service .. 72

Chapter 8 Publishing Service Support Matrix ... 73

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The

contents of this document are the property of Sitecore. Copyright © 2001-2021 Sitecore. All rights reserved.

Sitecore Publishing Service Installation and Configuration Guide

4

© Copyright 2019, Sitecore - all rights reserved.

Chapter 1

Introduction

This document describes how to install and configure the Sitecore Publishing

Service.

The document contains the following chapters:

• Chapter 1

An introduction to the Sitecore Publishing Service module.

• Chapter 2

Step-by-step instructions for installing the Sitecore Publishing Service manually or

with a script.

• Chapter 3

The various command line arguments and startup modes supported by the

Sitecore Publishing Service.

• Chapter 4

Step-by-step instructions for configuring the Sitecore Publishing Service.

• Chapter 5

Description on how you can support high availability requirements.

• Chapter 6

Information about the Sitecore Publishing Service API.

• Chapter 7

Step-by-step instructions for updating the Sitecore Publishing Service.

• Chapter 8

The Sitecore Publishing Service Support Matrix.

Sitecore Publishing Service Installation and Configuration Guide

5

© Copyright 2019, Sitecore - all rights reserved.

1.1 About the Publishing Service Module

The Publishing Service module is an optional replacement for the existing Sitecore publishing

methods. This module increases publishing throughput, reduces the amount of time spent

publishing large volumes of items, and offers greater data consistency and reliability. The

module also improves the user experience and provides better visual feedback to the user on

the state of the publishing system.

The Publishing Service does not use any of the features, pipelines, and settings in the current

publishing system. It is an entirely new way of publishing Sitecore items and media.

The Publishing Service runs a separate process to the Sitecore CM instance.

Installation involves:

1. Installation and configuration of the Publishing Service.

2. Installation of the integration module package on your Sitecore instance. The integration

module ensures that every publishing action, such as triggering a site publish, is handed

on to the publishing service.

When you have installed the Publishing Service, it manages the whole publishing process:

1. It queues and executes publishing jobs.

2. It connects to the Source and Target (SQL) databases directly – reading and writing items

in bulk.

3. It issues events, such as cache clearing events, on Content Delivery servers.

4. It reports status information back to UI features, such as the Publishing Dashboard

application.

Sitecore Publishing Service Installation and Configuration Guide

6

© Copyright 2019, Sitecore - all rights reserved.

1.1.1 Publishing Service Concepts

The Publishing Service introduces some new concepts for understanding how the different

stages of the publishing work are handled:

• Publishing jobs

Previously, when a user chose to publish something, the publishing dialog remained open for

the duration of the publish process. This was awkward if the user needed to reboot or if their

session ended because they could not see the status of the publishing job.

The publishing service places all publishing jobs in a queue. When you request a publishing job

of any kind, it is queued and then processed as soon as possible. You can see all the active,

queued, and completed jobs in the Publishing Dashboard application.

• Manifests

This is the collective name for all the tasks that a publishing job performs. The Publishing Service

calculates the manifest at the beginning of the publishing job, before it moves any data.

The Publishing Service looks at the items to see if there any restrictions that would prevent them

from being published:

o Valid dates/workflow states, and so on.

o Evaluating whether the item might need to be deleted.

o If it is a media file.

o If extra data needs to be moved along with the item.

Valid items are added to the manifest as a ‘Manifest Step’. Each publishing target gets its own

manifest. A publishing job can therefore consist of one or more manifests. The completed

manifest is a list of all the items that will be used in the next stage of the process - the

Promotion.

• Promotion

This term describes the process of moving the items and data from the source, most often the

Master database, to one or more publishing targets, such as the Web database.

The Publishing Service creates a manifest and then moves it to one or more publishing targets.

• Manifest results

A list of the changes that were made during the promotion of the manifest. This includes things

like item name changes and template updates.

Sitecore Publishing Service Installation and Configuration Guide

7

© Copyright 2019, Sitecore - all rights reserved.

At the end of the publishing job, the results are passed to the publishEndResultBatch

pipeline in Sitecore. Developers can hook into this pipeline to work with these results and update

any third-party systems or features that may need to know about the changes to items.

If there is no work to do, that is, if an item is unchanged even though it was in the manifest, a

manifest result is not generated.

Sitecore Publishing Service Installation and Configuration Guide

8

© Copyright 2019, Sitecore - all rights reserved.

Chapter 2

Installing the Sitecore Publishing Service

You can install the Sitecore Publishing Service manually or by using the utility

scripts that come with the package.

This chapter describes:

• Prerequisites

• Manual Installation

• Scripted Installation

Sitecore Publishing Service Installation and Configuration Guide

9

© Copyright 2019, Sitecore - all rights reserved.

2.1 Prerequisites

2.1.1 Sitecore Publishing Service Requirements

The Sitecore Publishing Service comes in a single ZIP archive that you can be execute directly

after you have unpacked it. However, you should run the service under IIS because this gives

greater configurability of, for example, host addresses and port binding.

• Sitecore Publishing Service 4.1.0 zip file.

The prerequisites for the Sitecore Publishing Service 4.1.0 release are:

• Windows Server Hosting (.NET Core)

To enable the service to run under IIS, you must install the latest version of the ASP.NET

Core/.NET Core: Runtime & Hosting Bundle.

https://dotnet.microsoft.com/download/dotnet-core/2.1
https://dotnet.microsoft.com/download/dotnet-core/2.1

Sitecore Publishing Service Installation and Configuration Guide

10

© Copyright 2019, Sitecore - all rights reserved.

2.2 Manual Installation

Before you install the Sitecore Publishing Service, make sure you have all the prerequisites in

place.

To install the Sitecore Publishing Service manually:

1. Download the Sitecore Publishing Service package from the Sitecore Downloads page .

2. Extract the contents of the archive to a folder of your choice. For example:
C:\inetpub\wwwroot\sitecorepublishing

3. In IIS, create a new site pointing to the folder.

4. Start the IIS Manager and in the Connections panel, expand Sites. Right-click Sites and

then click Add Website.

5. In the Add Website dialog, fill in the required fields.

Note

If you add a custom host name, you must update your hosts file

(C:\Windows\System32\drivers\etc\).

6. In the IIS Manager, right-click the application pool for the website that you created, and

then click Basic Settings.

7. In the Edit Application Pool dialog, in the .NET CLR version field, select No Managed

Code.

https://dev.sitecore.net/

Sitecore Publishing Service Installation and Configuration Guide

11

© Copyright 2019, Sitecore - all rights reserved.

Note

The Application Pool user must have Read, Execute, and Write permissions to the site’s

physical path.

8. In the IIS Manager, right-click the application pool for the website that you created, and

then click Advanced Settings.

9. In the Advanced Settings dialog, in the Idle Time-out (minutes) field, enter 0.

10. Configure the core, master, web and service connection strings for the service along with

any additional configuration values.

For more information about the configuration command, see the section

SetConnectionString Command.

11. To upgrade the database schema, run the schema upgrade command from the extracted

folder.

For more information about the schema upgrade command, see the section Upgrade.

12. To access your website, enter

http://<sitename>/api/publishing/operations/status in your browser.

If you receive a value of { "status" : 0, “statusType”: “Ok” }, the application is

installed correctly. If you receive any other value, check the application logs for further

details.

Sitecore Publishing Service Installation and Configuration Guide

12

© Copyright 2019, Sitecore - all rights reserved.

2.3 Scripted Installation

The Sitecore Publishing Service can be installed using commands built into the application.

To perform a scripted installation:

1. Extract the contents of the archive to a folder of your choice. For example:
c:\inetpub\wwwroot\publishingservice

This will be the location where IIS points to the service.

2. To enable the execution of multiple batches on a single connection, configure the

connection strings that support Multiple Active Result Sets.

Note

If the connection string does not support Multiple Active Result Sets (), it will be changed

when you invoke the configuration command.

3. If the provided connection string does not already exist, it will be added to the

configuration when you invoke the configuration command. Otherwise, it replaces the

connection string with the same key.

For example, to configure the core, master and web connection strings, run the following

commands:

o $ Sitecore.Framework.Publishing.Host configuration

setconnectionstring core 'value'

o $ Sitecore.Framework.Publishing.Host configuration

setconnectionstring master 'value'

o $ Sitecore.Framework.Publishing.Host configuration

setconnectionstring web 'value'

For more details, see the section SetConnectionString Command.

4. Set additional configuration values as needed.

For example, to set the instance name, run the following command:

o $ Sitecore.Framework.Publishing.Host configuration, set the
Sitecore:Publishing:InstanceName –val MyInstance.

For more details, see the section Set Commands.

5. Update the relevant schemas.

For example, to upgrade the schemas to the latest versions, run the schema command:

o $ Sitecore.Framework.Publishing.Host schema upgrade –-force

For more details, see the section Schema Command.

6. When the instance is configured and the schemas have been upgraded, you can install it

into IIS using the following command:

o $ Sitecore.Framework.Publishing.Host iis install –hosts –-force

For more details, see the section IIS Command.

Sitecore Publishing Service Installation and Configuration Guide

13

© Copyright 2019, Sitecore - all rights reserved.

2.3.1 Scaled Environment Considerations

The default configuration for the Publishing Service specifies that the Links Data is stored in the

Core database.

If you are running the Publishing Service in a scaled environment and if your Links Data is stored

in a different database than the Core database, you must update the Publishing Service

configuration accordingly.

For example, if the Links Data is stored in the Web database, then the Publishing Service

configuration needs the following override:

<DefaultConnectionFactory>

 <Options>

 <Connections>

 <Links>

 <Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection,

Sitecore.Framework.Publishing.Data</Type>

 <Options>

 <ConnectionString>${Sitecore:Publishing:ConnectionStrings:Web}</ConnectionString>

 </Options>

 </Links>

Sitecore Publishing Service Installation and Configuration Guide

14

© Copyright 2019, Sitecore - all rights reserved.

Chapter 3

Sitecore Publishing Service Commands

This chapter covers the commands that you can use to configure or execute the

Sitecore Publishing Service.

This chapter describes:

• Introduction

• Web Command

• IIS Command

• Configuration Command

• Schema Command

• Diagnostics Command

Sitecore Publishing Service Installation and Configuration Guide

15

© Copyright 2019, Sitecore - all rights reserved.

3.1 Introduction

The Sitecore Publishing Service supports various command line arguments and startup modes.

You can call the application directly to run the default command and optionally pass arguments

to modify the execution.

The Web command is the default command for the application. For more details, see the section

Web Command.

3.1.1 General Execution Format

When you execute the commands, the following applies:

• Executing the .exe will run the default command.

• Options are named, for example, -h, --help. Some of the options may require passing

values.

• Arguments are passed separated with a space immediately after the command and

before any options.

• Child commands are passed as named arguments immediately after the parent

command.

3.1.2 Logs

Any output from a command is added to a Commands-{data}.log file in the Logs folder in the root

of the Publishing Service application.

Sitecore Publishing Service Installation and Configuration Guide

16

© Copyright 2019, Sitecore - all rights reserved.

3.2 Web Command

The Web command is the default command for the application. When the Sitecore Publishing

Service starts, it loads the configuration values from the following sources:

• The command line

• The Sitecore configuration files

• The Sitecore environment variables

• The ASPNETCORE environment variables

Note

The configuration values are loaded in the above order, where the values at the command line

supersede the others.

The command does not support any specific options or arguments, except from help and version.

However, it does allow the passing of key-value pairs to allow starting the application with

different configurations.

You can pass the following options:

Option Template Type Details Default value

Help -? | --help Switch Displays help

information.

Version --version Switch Displays version

information.

Verbosity --verbosity Single -

LogLevel

Specify the level at

which information is

logged to the screen.

Information

3.2.1 Host Configuration Options

To change the startup behavior of the application, you can use the following host configuration

options through the command line or as environment variables.

Option Aspnet

Environment

Sitecore

Environ

ment

Command line Type Details

Detailed

Errors

ASPNETCORE_DE

TAILEDERRORS

SITECOR

E_DETAIL

EDERROR

S

--detailederrors Single - Bool Displays

detailed

error

information

instead of

generic error

pages.

Sitecore Publishing Service Installation and Configuration Guide

17

© Copyright 2019, Sitecore - all rights reserved.

Capture

Startup

Errors

ASPNETCORE_CA

PTURESTARTUPE

RRORS

SITECOR

E_CAPTU

RESTART

UPERROR

S

--

capturestartuperr

ors

Single - Bool Displays

errors

caused

during

startup, if

possible.

Environm

ent

ASPNETCORE_EN

VIRONMENT

SITECOR

E_ENVIR

ONMENT

--environment Single -

String

Starts the

service in the

specified

environment.

URLs ASPNETCORE_UR

LS

SITECOR

E_URLS

--urls Single -

String

Starts the

service to

respond to

the specified

URLs.

Separate

multiple

URLs with a

semicolon,

for example,

http://localho

st:5000;http:/

/loclahost:50

01.

For example, to start the Publishing Service in a specific environment and on specific URLs:

• $ Sitecore.Framework.Publishing.Host --urls

'http://localhost:5000;http://localhost:50001' --environment

Development.

3.2.2 Custom Configuration Values

Custom configuration values can be passed at the command line or defined via the environment.

The values can be set using the following types:

Type Example

Configuration Key Sitecore:Publishing:Logging:Filters:Microsoft

Aspnet

Environment

Variable

Set

ASPNETCORE_Sitecore__Publishing__Logging__Filters__Microsoft=Trace

itecore

Environment

Variable

Set SITECORE_Sitecore__Publishing__Logging__Filters__Microsoft=Trace

Command line --Sitecore:Publishing:Logging:Filters:Microsoft Trace

Sitecore Publishing Service Installation and Configuration Guide

18

© Copyright 2019, Sitecore - all rights reserved.

When you set the custom configuration values, use the following formats:

• When you set the value as an environment, replace the colon ':' with a double

underscore '__'.

• The environment prefix consists of a type (ASPNETCORE or SITECORE) and a single

underscore.

• The command line arguments must have the prefix '--'.

Sitecore Publishing Service Installation and Configuration Guide

19

© Copyright 2019, Sitecore - all rights reserved.

3.3 IIS Command

You can install the Publishing Service into the IIS. When you run the command, the site is

configured in IIS under the specified sitename and port. The command creates two bindings

based on the specified sitename and the machine name and, if requested, it can update the

hosts file.

When you run the commands, you may receive the following exception:

Exception Information Resolution

Cannot read configuration

file due to insufficient

permissions

One or more IIS configuration

files cannot be read by the

current user.

Execute the command as a

user with the correct

permissions.

3.3.1 Install Options

Use the following when you install the Publishing Service on IIS:

Option Template Type Details Default Value

Help -? | --help Switch Displays help information.

Version --version Switch Displays version information.

Verbosity --verbosity Single -

LogLevel

Specify the level where the

information is logged to the

screen.

Information

Site Name -s | --

sitename

Single -

String

Specify the site that must be

installed.

'sitecore.publishing'

App Pool

Name

-a | --

apppool

Single -

String

Specify the application pool for

the site.

The sitename

Port

Number

-p | --port Single - Int Specify the port that must be

assigned to the default binding.

Must be an integer.

80

Force --force Switch If the site already exists, this

switch overwrites the current

configuration. Without this, the

command fails.

Hosts --hosts Switch Update the hosts file entry.

For example:

• To install the service in IIS using the default values:

o $ Sitecore.Framework.Publishing.Host iis install

• To install the service in IIS using specific site and app pool names:

o $ Sitecore.Framework.Publishing.Host iis install -site

publishing.service -app publishing.service

Sitecore Publishing Service Installation and Configuration Guide

20

© Copyright 2019, Sitecore - all rights reserved.

• To install the service in IIS using specific site and app pool names, a custom port, and

update the machines hosts file (the use of force ensures that any existing site with the

same name is updated):

o $ Sitecore.Framework.Publishing.Host iis install -site

publishing.service -app publishing.service --port 5001 --force –

hosts

Sitecore Publishing Service Installation and Configuration Guide

21

© Copyright 2019, Sitecore - all rights reserved.

3.4 Configuration Command

The configuration command allows configuration values to be persisted in the configuration files

for the global or the specific environments.

When you run the commands, you might receive the following exception:

Exception Information Resolution

Access to the path

'…' is denied

The users do not have access to

change the configuration files.

Execute the command as a user

with the correct permissions.

3.4.1 Set Commands

With the set command, you can write a configuration value to a configuration file:

Command Example Details

Key Sitecore:publishing:service:keyname Use this to set or modify the

configuration file. The command

must be separated with a colon

':'.

You can use the following options:

Option Template Type Details Default value

Help -? | --help Switch Displays help information.

Version --version Switch Displays version information

Verbosity --verbosity Single -

LogLevel

Specify the level at which

information is logged to the

screen.

Information

Environment -e|--

environment
Single -

String

Starts the service in the

specified environment

folder where changes will be

persisted.

global

Filename -f|--file Single -

String

Specify the name of the file

where changes will be

persisted.

sc.custom.json

Value -v | --value Multiple -

String

Specify the value to persist.

Repeat use to provide

multiple values. If none are

provided, 'null' is set as the

value or '[]' for arrays.

'null' or '[]'

As Array --array Switch Provide this flag to ensure

the value is set as an array.

Sitecore Publishing Service Installation and Configuration Guide

22

© Copyright 2019, Sitecore - all rights reserved.

For example:

• To set a sitecore:publishing:entry configuration entry:

o $ Sitecore.Framework.Publishing.Host configuration set

sitecore:publishing:entry -v myvalue

• To set the configuration entry in a custom file:

o $ Sitecore.Framework.Publishing.Host configuration set

sitecore:publishing:entry -v myvalue -f sc.alternate.json

• To set the configuration entry in an alternative environment:

o $ Sitecore.Framework.Publishing.Host configuration set

sitecore:publishing:entry -v myvalue -e Development

• To set the configuration entry to an array of values:

o $ Sitecore.Framework.Publishing.Host configuration set

sitecore:publishing:entry -v myvalue -v otherValue

• To set the configuration entry to an array with a single value:

o $ Sitecore.Framework.Publishing.Host configuration set

sitecore:publishing:entry -v myvalue –array

3.4.2 SetConnectionString Command

To set or change a connection in a configuration file, use the SetConnectionString command.

The required arguments are:

Argument Example Details

Name Core Specify the name of the

connection string that

you want to configure.

Value Data Source=.\\SQLSERVER17;Initial

Catalog=511108sc823_core;Integrated

Security=False;User

ID=***;Password=***;MultipleActiveResultSets=True;

ConnectRetryCount=15;ConnectRetryInterval=1

Specify the value of the

connection string.

If the value does not

support MARS, it will be

updated.

For example:

• To set a connection string value for the Core database:

o $ Sitecore.Framework.Publishing.Host configuration

setconnectionstring core Data Source=.\\SQLSERVER17;Initial

Catalog=511108sc823_core;Integrated Security=False;User

ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCoun

t=15;ConnectRetryInterval=1

• To set the Core database connection string to point to the Master connection string

configuration:

o $ Sitecore.Framework.Publishing.Host configuration

setconnectionstring core

{Sitecore:Publishing:ConnectionStrings:Master}

Sitecore Publishing Service Installation and Configuration Guide

23

© Copyright 2019, Sitecore - all rights reserved.

3.5 Schema Command

With the schema commands, you can install, update, and reset publishing schemas in the

databases.

Note

Like the Web command, all the commands allow for the configuration values to be overridden.

You can configure the schemas. For example, to provide alternative connection strings to those

in configuration, you can pass them as options.

For example:

$ Sitecore.Framework.Publishing.Host schema upgrade –

Sitecore:Publishing:ConnectionStrings:Core <corestring> --

Sitecore:Publishing:ConnectionStrings:Master <masterstring> --

Sitecore:Publishing:ConnectionStrings:Web <webstring>

When you run the commands, you might receive the following exception:

Exception Information Resolution

Create table

permission denied in

database

The user connecting to the

database does not have the

required permissions.

Provide a connection string

with the correct permissions.

3.5.1 Upgrade

Use the following options to upgrade the connections to the specified schemas:

Note

To apply changes, you must use the --force flag option.

Option Template Type Details Default

Value

Help -? | --help Switch Displays help

information.

Version --version Switch Displays version

information.

Verbosity --verbosity Single -

LogLevel

Specify the level at which

information is logged to

the screen.

Information

Environment -e|--environment Single - String Specify the environment

folder to load the

connection string

configuration.

Production

Schema

Version

-sv | --schema-

version

Single - Int Specify the schema

version to downgrade to.

0

Force --force Switch Provide this option for

the changes to be

persisted.

http://onenote/

Sitecore Publishing Service Installation and Configuration Guide

24

© Copyright 2019, Sitecore - all rights reserved.

For example:

• To upgrade the schemas to the latest version:

o $ Sitecore.Framework.Publishing.Host schema upgrade –-force

• To upgrade the schemas to version 3:

o $ Sitecore.Framework.Publishing.Host schema upgrade -sv 3 –-force

3.5.2 Downgrade

Use the following options to downgrade schemas for connections.

Note

To apply changes, you must use the --force flag option.

Option Template Type Details Default

Value

Help -? | --help Switch Displays help information.

Version --version Switch Displays version information.

Verbosity --verbosity Single -

LogLevel

Specify the level at which

information is logged to the

screen.

Information

Environment -e|--

environment

Single -

String

Specify the environment folder

to load the connection string

configuration.

Production

Schema

Version

-sv | --schema-

version

Single - Int Specify the schema version to

downgrade to.

0

Force --force Switch Provide this option for the

changes to be persisted.

For example:

• To downgrade the schemas to version 0:

$ Sitecore.Framework.Publishing.Host schema downgrade –-force

• To downgrade the schemas to version 3:

$ Sitecore.Framework.Publishing.Host schema downgrade -sv 3 –-force

3.5.3 Reset

Use the following options to reset the connections to use the specified schema:

Note

To apply changes, you must use the --force flag option.

Option Template Type Details Default

Value

Help -? | --help Switch Displays help information.

Sitecore Publishing Service Installation and Configuration Guide

25

© Copyright 2019, Sitecore - all rights reserved.

Option Template Type Details Default

Value

Version --version Switch Displays version information.

Verbosity --verbosity Single -

LogLevel

The level at which information is

logged to the screen.

Information

Environment -e|--

environment

Single -

String

Specify the environment folder to

load the connection string

configuration.

Production

Schema

Version

-sv | --

schema-

version

Single - Int Specify the schema version to

downgrade to.

0

Force --force Switch Provide this option for the

changes to be persisted.

For example:

• To reset the schemas to the latest version:

$ Sitecore.Framework.Publishing.Host schema reset –-force

• To reset the schemas to version 3:

$ Sitecore.Framework.Publishing.Host schema reset -sv 3 –-force

3.5.4 List

Use the following options to display information for each schema/connection:

Option Template Type Details Default

Value

Help -? | --help Switch Displays help information.

Version --version Switch Displays version information.

Verbosity --verbosity Single -

LogLevel

Specify the level at which

information is logged to the

screen.

Information

Details -d | --details Switch Display more information for each

schema.

Environment -e|--

environment

Single -

String

Specify the environment folder to

load the connection string

configuration.

Production

For example:

• To list detailed information for all schemas:

$ Sitecore.Framework.Publishing.Host schema list –d

• To list basic information for all schemas in the ‘Development’ environment:

$ Sitecore.Framework.Publishing.Host schema list -e Development

Sitecore Publishing Service Installation and Configuration Guide

26

© Copyright 2019, Sitecore - all rights reserved.

3.6 Diagnostics Command

With the diagnostics command, you can run diagnostic tools on the Publishing Service and on

the data stored on the Sitecore databases that relate to publishing.

3.6.1 Revision

To check and fix the format of the revision ID of each item in the source and target databases,

use the following options.

Option Template Type Details

Help -? | --help Switch Displays help information.

Detailed -d | --details Switch Displays details of each item with an invalid

revision ID.

Fix fix Switch Changes each incorrect revision ID to a

correct value.

For example:

• To list a summary of the number of invalid revision IDs in each database:

$ Sitecore.Framework.Publishing.Host.exe diagnostics revision

• To list each item with an invalid revision ID:

$ Sitecore.Framework.Publishing.Host.exe diagnostics revision -d

• To correct each invalid revision ID for items in each database:

$ Sitecore.Framework.Publishing.Host.exe diagnostics revision fix

Sitecore Publishing Service Installation and Configuration Guide

27

© Copyright 2019, Sitecore - all rights reserved.

Chapter 4

Configuring the Sitecore Publishing Service

The Sitecore Publishing Service supports custom configurations.

This chapter contains the following sections:

• Publishing Targets

• Configuration Sources

• Adding Configuration Values

• Configuring Options

• Database Configuration

• Schema Configuration

• Task Scheduling

• Content Availability

• Transient Error Tolerance for SQL Azure

• Reporting Field Changes

• Logging Configuration

• Excluding Items from Automatic Deletion from the Target Databases

• Configuring the Publishing Service to use Azure Application Insights

• Troubleshooting

Sitecore Publishing Service Installation and Configuration Guide

28

© Copyright 2019, Sitecore - all rights reserved.

4.1 Publishing Targets

The Publishing Service is configured to use a single publishing target by default, - the Internet.

If you want to publish to another publishing target, you must configure it.

We recommend that you create a patch file to edit the configuration files.

To configure a publishing target:

1. Add the connection string for the new publishing target database to the

ConnectionStrings section of the configuration

<?xml version="1.0" encoding="UTF-8"?>

 <Settings>

 <Sitecore>

 <Publishing>

 <ConnectionStrings>

 <Stage>Data Source=.;Initial Catalog=Preview;Integrated

Security=True;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=

1</Stage>

 </Publishing>

 </Sitecore>

 </Settings>

2. Add the new publishing target to the DefaultConnectionFactory configuration

section.

The name of the XML element in the DefaultConnectionFactory section must be the

same as the name of the publishing target in Sitecore.

<?xml version="1.0" encoding="UTF-8"?>

 <Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <DefaultConnectionFactory>

 <Options>

 <Connections>

 <Stage> <!—This should be the name of the target in Sitecore ->

<Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection,

Sitecore.Framework.Publishing.Data</Type>

 <LifeTime>Transient</LifeTime>

 <Options>

<ConnectionString>${Sitecore:Publishing:ConnectionStrings:Stage}</ConnectionString>

 <DefaultCommandTimeout>120</DefaultCommandTimeout>

 <Behaviours>

 <backend>sql-backend-default</backend>

 <api>sql-api-default</api>

 </Behaviours>

 </Options>

 </Stage>

 </Options>

 </DefaultConnectionFactory>

 </Services>

 </Publishing>

 </Sitecore>

 </Settings>

3. Add the new publishing target to the StoreFactory configuration section.

<?xml version="1.0" encoding="UTF-8"?>

 <Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <StoreFactory>

 <Options>

 <Stores>

 <Targets>

Sitecore Publishing Service Installation and Configuration Guide

29

© Copyright 2019, Sitecore - all rights reserved.

 <Stage>

<Type>Sitecore.Framework.Publishing.Data.TargetStore,

Sitecore.Framework.Publishing.Data</Type>

 <ConnectionName>Stage</ConnectionName>

<FeaturesListName>TargetStoreFeatures</FeaturesListName>

 <Id>GUID FROM SITECORE</Id>

 <ScDatabase>Stage</ScDatabase>

 </Stage>

 </Targets>

 </Stores>

 </Options>

 </StoreFactory>

 </Services>

 </Publishing>

 </Sitecore>

 </Settings>

The Id element in the configuration file must be the same as the Sitecore GUID of the

publishing target in Sitecore.

The ScDatabase element in the configuration file must be the same as the name of the

publishing target item in Sitecore.

Sitecore Publishing Service Installation and Configuration Guide

30

© Copyright 2019, Sitecore - all rights reserved.

4.2 Configuration Sources

During the startup of the Sitecore Publishing Service, the configuration sources are loaded in the

following order:

• Environment variables

• Default Sitecore configuration:

o <installationPath>\config\sitecore

• Global configuration:

o <installationPath>\config\global

• Environment specific configuration:

o <installationPath>\config\<environment>

During each stage of the loading, you can override previous values.

Note

If you apply any changes to the configuration files, you must restart the application.

The configuration folder contains all the configuration files for the Publishing Service:

• The Sitecore folder contains all the default configuration files provided by Sitecore that

you can review to learn what can be configured.

Important

Do not modify the files in the Sitecore folder. They are automatically overwritten during

the upgrade process.

• The Global folder – contains the custom/module configuration files that extend or

overwrite the Sitecore defaults. This is the location where developers must add their

instance specific configuration files, for example, where a configuration file contains

details of custom extensions and connection strings.

• <EnvironmentName> folder – add custom folders to support different environments. For

example, if a Development folder exists and the application environment is set to

Development, the configuration files in this folder are loaded. The default environment

Production will not load these files.

4.2.1 Configuration File Naming

When you create a configuration file, it must be prefixed with sc. in order to be loaded. When

you create a configuration file, it must be an .xml, .json, or .ini file in order to be loaded. All

other files are ignored.

Sitecore Publishing Service Installation and Configuration Guide

31

© Copyright 2019, Sitecore - all rights reserved.

4.3 Adding Configuration Values

To add a configuration value, declare the value at the relevant path. For example, the default

configuration contains an element called <Sitecore><Publishing><ConnectionStrings>:

<Settings>

 <Sitecore>

 <Publishing>

 <ConnectionStrings>

 <!-- The Service connection is registered to map to the same connection string as the

master database by default. -->

 <Service>${Sitecore:Publishing:ConnectionStrings:Master}</Service>

 </ConnectionStrings>

 ...

 </Publishing>

 </Sitecore>

</Settings>

To add a new value, save the following in:

<installationPath>\config\global\sc.connectionstrings.xml

<Settings>

 <Publishing>

 <ConnectionStrings>

 <Master>user id=sa;password=password;data

source=.\SQLEXPRESS;database=sitecore.Master;MultipleActiveResultSets=True;</Master>

 </ConnectionStrings>

 </Publishing>

</Settings>

The connection string is now defined at:
Sitecore:Publishing:ConnectionStrings:Master

4.3.1 Overriding Configuration Values

To override a configuration value, you must re-declare the value.

For example, if the default configuration contains an element called

<Sitecore><Publishing><Logging>:

<Sitecore>

 <Publishing>

 <!-- The default Loglevel for the instance. -->

 <Logging>

 <Filters>

 <Sitecore>Information</Sitecore>

 ...

Then, you can set the log level to Debug when running in Development, by saving the following

as: <installationPath>\config\development\sc.logging.json

{

 "Sitecore": {

 "Publishing": {

 "Logging": {

 "Filters": {

 "Sitecore": "Debug"

 }

}

 }

 }

}

Now, when the Publishing Service starts in a development environment, you get additional

logging information.

Sitecore Publishing Service Installation and Configuration Guide

32

© Copyright 2019, Sitecore - all rights reserved.

4.3.2 Referencing Configuration Values

If you have a configuration value that needs to be referenced elsewhere, you can reference it

using the syntax:

• ${ a:b:c }

This enables you to overwrite the value in a single location, and at the same time the

configuration supports its use in multiple configuration files.

For example, the default configuration file contains a connection string entry for the service that

is configured to point to the Master connection string by default.

If you add a configuration file that contains a value for

Sitecore:Publishing:ConnectionStrings:Master , the connection string is then used for

both the Master database and the Service database.

<Settings>

 <Sitecore>

 <Publishing>

 <ConnectionStrings>

 <!-- The Service connection is registered to map to the same connection string as the

master database by default. -->

 <Service>${Sitecore:Publishing:ConnectionStrings:Master}</Service>

 </ConnectionStrings>

 </Publishing>

 </Sitecore>

</Settings>

Alternatively, the value at <Sitecore><Publishing><ConnectionStrings><Service> could

be overwritten in another configuration file that provides an explicit connection string that

should be used.

Sitecore Publishing Service Installation and Configuration Guide

33

© Copyright 2019, Sitecore - all rights reserved.

4.4 Configuring Options

You configure the Sitecore Publishing Service by registering object types, so that the service can

replace default implementations with custom alternatives. Many of the object types that are

registered support an optional configuration section called Options.

When an object type supports Options, you can provide additional configuration values to

change the behavior of the application.

4.4.1 DatabaseConnectionOptions

You can use the DatabaseConnectionOptions class to specify the connection to a data source.

The DatabaseConnectionOptions class is used by the type:

• Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection.

namespace Sitecore.Framework.Publishing.Data.AdoNet

{

 public class DatabaseConnectionOptions

 {

 public string ConnectionString { get; set; }

 public int CommandTimeout { get; set; } = 120;

public Dictionary<string, string> Behaviours { get; set; } = new Dictionary<string,

string>(StringComparer.OrdinalIgnoreCase);

 }

}

The following example specifies an alternative value for the CommandTimeout setting of the

Service connection:

<Sitecore>

 <Publishing>

 <Services>

 <DefaultConnectionFactory>

 <Options>

 <Service>

 <Options>

 <CommandTimeout>30</CommandTimeout>

 </Options>

 </Service>

 </Options>

 </DefaultConnectionFactory>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

4.4.2 PublishHostOptions

You can use the PublishHostOptions class to specify the main configuration options for

logging in the Publishing Service and to specify the collection of services that must be registered.

Services are all the types that are registered during start up.

The PublishHostOptions class is used by the type:

• Sitecore.Framework.Publishing.Host.

namespace Sitecore.Framework.Publishing.Host

{

 public class PublishHostOptions

 {

 public List<ConfigurationServiceType> Services { get; set; } = new

List<ConfigurationServiceType>();

Sitecore Publishing Service Installation and Configuration Guide

34

© Copyright 2019, Sitecore - all rights reserved.

 public LoggingHostOptions Logging { get; set; }
 }

}

In the following example, a custom service is added to the collection of services.

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <MyCustomService>

 <Type>MyCustom.Service, MyCustom</Type>

 <As>MyCustom.IService, MyCustom.Abstractions</As>

 </MyCustomService>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

Note

To change the logging setup, see the section Logging Configuration.

4.4.3 PublishJobHandlerOptions

You can use the PublishJobHandlerOptions class to configure various aspects of the Publish

Job handler implementations to optimize performance.

The PublishJobHandlerOptions class is used by the types:

• Sitecore.Framework.Publishing.PublishJobQueue.Handlers.IncrementalPub

lishHandler

• Sitecore.Framework.Publishing.PublishJobQueue.Handlers.TreePublishHan

dler

namespace Sitecore.Framework.Publishing.PublishJobQueue

{

 public class PublishJobHandlerOptions

 {

 public int RelatedItemBatchSize { get; set; } = 2000;

 public int ManifestBuilderBatchSize { get; set; } = 5000;

 public int UnpublishedOperationsLoadingBatchSize { get; set; } = 2000;

 public int DeletedItemsBatchSize { get; set; } = 2000;

 public int MediaBatchSize { get; set; } = 2000;

 public int TargetOperationsBatchSize { get; set; } = 2000;

 public int SourceTreeReaderBatchSize { get; set; } = 2000;

 public bool TransactionalPromote { get; set; } = true;

 public bool ParallelPromote { get; set; } = true;

 public bool ContentTesting { get; set; } = true;

 public bool ContentAvailability { get; set; } = false;

 public bool DeleteOrphanedItems { get; set; } = true;

 public bool PublishRelatedItemParents { get; set; } = false;

 public List<Guid> PublishRelatedItemDescendants { get; } = new List<Guid>();

 public IEnumerable<Guid> IgnoreChildrenOfItemIds { get; set; }

Sitecore Publishing Service Installation and Configuration Guide

35

© Copyright 2019, Sitecore - all rights reserved.

 public IEnumerable<Guid> IgnoredTemplateIds { get; set; }

 public string DefaultLanguage { get; set; } = "en";

 }

}

The following configuration example specifies an alternative value for the default configuration:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <IncrementalPublishHandler>

 <Options>

 <!--Enable this feature if content testing is required and has been enabled in the

Sitecore platform-->

 <ContentTesting>True</ContentTesting>

 <!--Specifies the batch size of items that are handled by the ManifestBuilder.

Increasing or decreasing this value will affect performance, depending on the environment. -->

 <ManifestBuilderBatchSize>5000</ManifestBuilderBatchSize>

 <!--Enables parallel promotion, this allows the promotion of item to multiple

targets in parallel. This will speed up promotion, but consume more resources.-->

 <ParallelPromote>False</ParallelPromote>

 <!--Specifies the batch size of related items that are handled by the

VariantsRelatedNodesTargetProducer. Increasing or decreasing this value will affect

performance, depending on the environment. -->

 <RelatedItemBatchSize>2000</RelatedItemBatchSize>

 <!--Specifies the batch size of items that are handled by the

TreeNodeSourceProducer. Increasing or decreasing this value will affect performance, depending

on the environment. -->

 <SourceTreeReaderBatchSize>2000</SourceTreeReaderBatchSize>

 <!--Specifies the batch size of items that are handled by the

VariantsValidationTargetProducer. Increasing or decreasing this value will affect performance,

depending on the environment. -->

 <TargetOperationsBatchSize>2000</TargetOperationsBatchSize>

 <!--Enables transactional promotion, this performs the publish job as a

transaction. -->

 <TransactionalPromote>True</TransactionalPromote>

 <!--Specifies the batch size of items that are handled by the

UnpublishedNodeSourceProducer within IncrementalPublishHandler. Increasing or decreasing this

value will affect performance, depending on the environment. -->

<UnpublishedOperationsLoadingBatchSize>2000</UnpublishedOperationsLoadingBatchSize>

 </Options>

 </IncrementalPublishHandler>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

4.4.4 PromoterOptions

You use the PromoterOptions class to configure various aspects of the Publish Job promoter

implementations to optimize performance.

The PromoterOptions class is used by:

• Sitecore.Framework.Publishing.DataPromotion.DefaultItemCloneManifestP

romoter

• Sitecore.Framework.Publishing.DataPromotion.DefaultItemManifestPromot

er

Sitecore Publishing Service Installation and Configuration Guide

36

© Copyright 2019, Sitecore - all rights reserved.

• Sitecore.Framework.Publishing.DataPromotionDefaultMediaManifestPromot

er

namespace Sitecore.Framework.Publishing.Abstractions.DataPromotion

{

 public class PromoterOptions

 {

 public int BatchSize { get; set; } = 500;

 }

}

The following configuration example specifies an alternative BatchSize class for the registered

ItemCloneManifestPromoter:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <ItemCloneManifestPromoter>

 <Options>

 <BatchSize>1000</BatchSize>

 </Options>

 </ItemCloneManifestPromoter>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

4.4.5 PromotionCoordinatorOptions

You can use the DefaultPromotionCoordinatorOptions class to specify whether the

Publishing Service should update the Descendants table. The default value is false, as this

improves the performance of the publishing process.

The DefaultPromotionCoordinatorOptions class is used by the type:

• Sitecore.Framework.Publishing.DataPromotion.DefaultPromotionCoordinat

or

namespace Sitecore.Framework.Publishing.DataPromotion

{

 public class DefaultPromotionCoordinatorOptions

 {

 public bool RebuildDescendantsTable { get; set; } = false;

 {

}

The following configuration example illustrates how to update the Descendants table:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <PromotionCoordinator>

 <Options>

 <RebuildDescendantsTable>true</RebuildDescendantsTable>

 </Options>

 </PromotionCoordinator>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

Note

If you use Sitecore’s digital marketing functionality, you must update the Descendants table.

Sitecore Publishing Service Installation and Configuration Guide

37

© Copyright 2019, Sitecore - all rights reserved.

4.5 Database Configuration

Database configuration details can be seen in the sc.publishing.xml configuration file.

For SQL database connections, the user defined in the connection string must have the following

permissions:

• Delete

• Execute

• Insert

• Select

• Update

Note

In addition, for executing the schema commands, the user must also have the Alter permission.

4.5.1 Connection Strings

The connection strings are configured under

<Sitecore><Publishing><ConnectionStrings>.

Sitecore expects three default connection strings to be configured – core, web, and master, and

these are referenced elsewhere in the configuration.

<Settings>

 <Publishing>

 <ConnectionStrings>

 <Master>Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_master;Integrated

Security=False;User

ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1<

/Master>

 <Web>Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_web;Integrated

Security=False;User

ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1<

/Web>

 <Core>Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_core;Integrated

Security=False;User

ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1<

/Core>

 </ConnectionStrings>

 </Publishing>

</Settings>

Currently, SQL connection strings require that they support Multiple Active Result Sets (MARS),

so when configuring a connection string, you must set MultipleActiveResultSets to true.

Use the following format or similar for connection strings:

Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823_core;Integrated Security=False;User

ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1

For more information, see https://www.connectionstrings.com/sqlconnection/.

4.5.2 DefaultConnectionFactory

In the DefaultConnectionFactory configuration, the connections are defined. Each

connection defines its type, configuration options, and name.

https://www.connectionstrings.com/sqlconnection/

Sitecore Publishing Service Installation and Configuration Guide

38

© Copyright 2019, Sitecore - all rights reserved.

The following example defines a connection called Internet that uses the web connection

string:

<DefaultConnectionFactory>

 <Options>

 <Connections>

 <Internet>

 <!-- Should match the name of the publishing target configured in SC. -->

 <Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection,

Sitecore.Framework.Publishing.Data</Type>

 <LifeTime>Transient</LifeTime>

 <Options>

 <ConnectionString>${Sitecore:Publishing:ConnectionStrings:Web}</ConnectionString>

 <DefaultCommandTimeout>120</DefaultCommandTimeout>

 <Behaviours>

 <backend>sql-backend-default</backend>

 <api>sql-api-default</api>

 </Behaviours>

 </Options>

 </Internet>

 </Connections>

 </Options>

</DefaultConnectionFactory>

The following connections are configured by default:

Connections Type Points to

Links SQL Core connection string

Service SQL Service connection string

Master SQL Master connection string

Internet SQL Web connection string

4.5.3 StoreFactory

The StoreFactory configuration configures stores in the application that binds one or more

connections to a collection of features.

The configuration of Stores is divided into the following sections:

Store Type Connections Details

Service Service The store containing service data.

Sources Master The store(s) for source data. Each source can register

multiple connections.

Targets Internet The store(s) for target data. Each entry is a possible

publish target.

ItemsRelationship Links The store for relationship information.

Custom User defined Optional custom data stores can be configured.

The following example defines the Sources and Targets sections:

<StoreFactory>

 <Options>

 <Stores>

 <Sources>

 <Master>

 <Type>Sitecore.Framework.Publishing.Data.SourceStore,

Sitecore.Framework.Publishing.Data</Type>

Sitecore Publishing Service Installation and Configuration Guide

39

© Copyright 2019, Sitecore - all rights reserved.

 <ConnectionNames>

 <master>Master</master>

 </ConnectionNames>

 <FeaturesListName>SourceStoreFeatures</FeaturesListName>

 <!-- The name of the Database entity in Sitecore. -->

 <ScDatabase>master</ScDatabase>

 </Master>

 </Sources>

 <Targets>

 <!--Additional targets can be configured here-->

 <Internet>

 <Type>Sitecore.Framework.Publishing.Data.TargetStore,

Sitecore.Framework.Publishing.Data</Type>

 <ConnectionName>Internet</ConnectionName>

 <FeaturesListName>TargetStoreFeatures</FeaturesListName>

 <!-- The id of the target item definition in Sitecore. -->

 <Id>8E080626-DDC3-4EF4-A1D1-F0BE4A200254</Id>

 <!-- The name of the Database entity in Sitecore. -->

 <ScDatabase>web</ScDatabase>

 </Internet>

 </Targets>

 </Stores>

 </Options>

</StoreFactory>

Note

The Sources and Targets must set the ScDatabase property. Targets must also set the Id

property.

4.5.4 StoreFeatureLists

The StoreFeatureLists configuration specifies the list of features that are available on a

specific store.

In the following example, the features that are available to the source store are several

repositories. A store feature list is linked back to a store via its name that is stored in the

FeatureListName element.

<StoreFeaturesLists>

 <Options>

 <FeatureLists>

 <!--Source Store Features-->

 <SourceStoreFeatures>

 <ItemReadRepositoryFeature>

 <Type>Sitecore.Framework.Publishing.Data.CompositeItemReadRepository,

Sitecore.Framework.Publishing.Data</Type>

 </ItemReadRepositoryFeature>

 <TestableContentRepositoryFeature>

 <Type>Sitecore.Framework.Publishing.Data.CompositeTestableContentRepository,

Sitecore.Framework.Publishing.Data</Type>

 </TestableContentRepositoryFeature>

 <WorkflowStateRepositoryFeature>

 <Type>Sitecore.Framework.Publishing.Data.CompositeWorkflowStateRepository,

Sitecore.Framework.Publishing.Data</Type>

 </WorkflowStateRepositoryFeature>

 <EventQueueRepositoryFeature>

 <Type>Sitecore.Framework.Publishing.Data.CompositeEventQueueRepository,

Sitecore.Framework.Publishing.Data</Type>

 <options>

 <ConnectionName>master</ConnectionName>

 </options>

 </EventQueueRepositoryFeature>

 </SourceStoreFeatures>

 </FeatureLists>

 </Options>

</StoreFeaturesLists>

Sitecore Publishing Service Installation and Configuration Guide

40

© Copyright 2019, Sitecore - all rights reserved.

4.5.5 Custom Data Providers

To support multiple providers of data for a source store, you can add custom data providers to

the system.

To add custom data providers to the system:

1. Create a class that implements the IIndexableItemReadRepository interface. The

following three methods are contained with the type:

o GetItemNodeDescriptors – this method must be implemented to return all the

items contained within the custom data provider. The IItemNodeDescriptor

interface only contains a small number of properties to represent each item.

o GetItemNodes – this method returns IEnumerable<IItemNode> when a list of

item Guids is supplied. The IItemNode represents an item including its field data.

o GetVariants – this method returns a IEnumerable<IItemVariant> when

supplied with a list of IDataLocators. The IItemVarient represents an item

variant (language and version) and its corresponding fields.

2. Create a connection class. You can inherit from IConnection, or use an existing type

(for example, SQLDatabaseConnection).

3. Create a repository builder by implementing

DefaultRepositoryBuilder<IItemReadRepository, TRepo, TConnection>,

where:

o TRepo is what you entered in step 1

o TConnection is what you entered in step 2.

4. Update the configuration:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <!-- Register the custom repository builder -->

 <MyCustomItemReadRepositoryBuilder>

 <Type>My.Custom.ItemReadRepositoryBuilder, My.Custom</Type>

 <As>Sitecore.Framework.Publishing.Repository.IRepositoryBuilder`1[[Sitecore.

Framework.Publishing.Item.IIndexableItemReadRepository,

Sitecore.Framework.Publishing.Service.Abstractions]],

Sitecore.Framework.Publishing.Service.Abstractions</As>

 </MyCustomItemReadRepositoryBuilder>

 <DefaultConnectionFactory>

 <Options>

 <Connections>

 <!-- Register the custom connection -->

 <Custom>

 <Type>My.Custom.FileSystemProvider.FileSystemConnection,

My.Custom</Type>

 <Lifetime>Transient</Lifetime>

 <Options>

 <IdTablePrefix>pubExample</IdTablePrefix>

 <IdTableConnection>Master</IdTableConnection>

 <RootFolder>C:\siecoredata\Data\CustomItems</RootFolder>

 </Options>

 </Custom>

 </Connections>

 </Options>

 </DefaultConnectionFactory>

 <StoreFactory>

 <Options>

 <Stores>

 <Sources>

 <Master>

Sitecore Publishing Service Installation and Configuration Guide

41

© Copyright 2019, Sitecore - all rights reserved.

 <!-- add the connection to the master source -->

 <ConnectionNames>

 <custom>Custom</custom>

 </ConnectionNames>

 </Master>

 </Sources>

 </Stores>

 </Options>

 </StoreFactory>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

Note

Currently, the publishing service supports reading from a custom data provider, for example,

reading from a customized source and then publishing that data as Sitecore items to the target

database.

However, writing or publishing to a custom data provider is not currently supported.

Sitecore Publishing Service Installation and Configuration Guide

42

© Copyright 2019, Sitecore - all rights reserved.

4.6 Schema Configuration

During startup, the Sitecore Publishing Service checks whether the latest version of the schema

is installed. If the schema needs to be updated, the service shuts down.

You can use the schema command to update and install schemas in the registered connections.

A schema is defined as a DLL that contains a set of resources for preparing a connection for its

role in the service. The resources are organized into versions to support incremental schema

upgrade and downgrade. This means that, in the example of an SQL schema, the DLL contains

multiple scripts for dropping and recreating tables, stored procedures, and other requirements

for accessing SQL data.

Schemas can be split, based on their feature set and/or their connection type and they are

configured under <Sitecore><Publishing><Services><SchemaInstaller><Options>.

The following code sample is the default schema configuration that defines the suite of schemas

that are installed by the schema update tool:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <SchemaInstaller>

 <Options>

 <!--

 The DeploymentMap defines which schemas are loaded into which connection

 -->

 <DeploymentMap>

 <Custom>

 <Links>

 <Common>Common</Common>

 <Data-Common>Data-Common</Data-Common>

 <Data-Links>Data-Links</Data-Links>

 </Links>

 </Custom>

 <Service>

 <Common>Common</Common>

 <Service>Service</Service>

 </Service>

 <Source>

 <Common>Common</Common>

 <Data-Common>Data-Common</Data-Common>

 <Data-Source>Data-Source</Data-Source>

 </Source>

 <Target>

 <Common>Common</Common>

 <Data-Common>Data-Common</Data-Common>

 <Data-Target>Data-Target</Data-Target>

 </Target>

 </DeploymentMap>

 <!--

 The schemas bind names from the DeploymentMap to a Type/Assembly containing sql

schemas to be loaded

 -->

 <Schemas>

 <Common>Sitecore.Framework.Publishing.Common.Sql.Schema,

Sitecore.Framework.Publishing.Common.Sql.Schema</Common>

 <Data-Common>Sitecore.Framework.Publishing.Data.Common.Sql.Schema,

Sitecore.Framework.Publishing.Data.Common.Sql.Schema</Data-Common>

 <Data-Links>Sitecore.Framework.Publishing.Data.Links.Sql.Schema,

Sitecore.Framework.Publishing.Data.Links.Sql.Schema</Data-Links>

 <Data-Source>Sitecore.Framework.Publishing.Data.Source.Sql.Schema,

Sitecore.Framework.Publishing.Data.Source.Sql.Schema</Data-Source>

 <Data-Target>Sitecore.Framework.Publishing.Data.Target.Sql.Schema,

Sitecore.Framework.Publishing.Data.Target.Sql.Schema</Data-Target>

 <Service>Sitecore.Framework.Publishing.Service.Sql.Schema,

Sitecore.Framework.Publishing.Service.Sql.Schema</Service>

 </Schemas>

 </Options>

Sitecore Publishing Service Installation and Configuration Guide

43

© Copyright 2019, Sitecore - all rights reserved.

 </SchemaInstaller>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

4.6.1 The Deployment Map

The DeploymentMap section maps the schemas to connection types.

The following code sample binds the Common, Data-Common, and Data-Links schemas that must

be installed on the custom Links connection. The Common and Service schemas are installed on

the Service connection.

<DeploymentMap>

 <Custom>

 <Links>

 <Common>Common</Common>

 <Data-Common>Data-Common</Data-Common>

 <Data-Links>Data-Links</Data-Links>

 </Links>

 </Custom>

 <Service>

 <Common>Common</Common>

 <Service>Service</Service>

 </Service>

4.6.2 Schemas

The Schemas section names all the schemas that are installed.

Each configuration value should point to a type in an assembly where the schemas can be

discovered. The following code sample names the

Sitecore.Framework.Publishing.Common.Sql.Schema assembly as Common and the

Sitecore.Framework.Publishing.Data.Common.Sql.Schema assembly as Data-Common:

<Schemas>

 <Common>Sitecore.Framework.Publishing.Common.Sql.Schema,

Sitecore.Framework.Publishing.Common.Sql.Schema</Common>

 <Data-Common>Sitecore.Framework.Publishing.Data.Common.Sql.Schema,

Sitecore.Framework.Publishing.Data.Common.Sql.Schema</Data-Common>

4.6.3 Validating Schemas

When the publishing service starts, it checks whether the latest schema is installed. The version

of the installed schemas retrieved from the PublishingSchema table is compared to the

Sitecore Publishing Service Installation and Configuration Guide

44

© Copyright 2019, Sitecore - all rights reserved.

schema version in the resource file. If a schema upgrade is needed, the service will shut down

and log an error message telling you to upgrade the schema.

Sitecore Publishing Service Installation and Configuration Guide

45

© Copyright 2019, Sitecore - all rights reserved.

4.7 Task Scheduling

The task scheduler is a service that manages the creation of tasks at start up as well as enabling

the addition and execution of tasks at runtime.

4.7.1 Task Configuration

The Publishing Service enables you to configure independent tasks in the system. It contains two

task definitions by default:

• PublishTask – the task that handles requests to publish items from sources to targets.

• PublishJobCleanUpTask – the tasks that handles the periodic clean-up of historical

publishing jobs.

The default task configuration is contained in the

config\sitecore\sc.publishing.tasks.xml configuration file.

PublishTask

The PublishTask task definition is configured with two triggers:

• Interval – the interval trigger runs every few seconds to check for publishing jobs that

were requested while the previous publishing job was running.

• Event – the event-based trigger causes a publishing job to start immediately after it is

requested. If a publishing job is already being processed, the job is delayed until the next

interval.

PublishJobCleanUpTask

The PublishJobCleanUpTask task definition removes old publishing jobs from the database to

prevent the buildup of data over time. It has a single trigger raising on an infrequent schedule to

remove jobs over a week old.

You can configure the task by changing its options:

• JobAge – the time that must have passed since a publishing job’s Stopped time. The

default value is seven days. If a publishing job’s Stopped time is older than the JobAge, it

is eligible for clean-up.

• BatchSize – this is the number of items in the batch that can be deleted together. The

default value is 50.

4.7.2 Defining a Task

When you have implemented a task, it must be added to the configuration so that it can be

created at startup:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <Scheduler>

 <Options>

 <Tasks>

 <CustomTask>

 <TaskDefinition Type="Custom.Task, Custom" BindOptions="property">

 <Options>

Sitecore Publishing Service Installation and Configuration Guide

46

© Copyright 2019, Sitecore - all rights reserved.

 <Id>Custom Task</Id>

 <Categories>

 <Custom>Custom</Custom>

 <Other>Other</Other>

 </Categories>

 </Options>

 </TaskDefinition>

 </CustomTask>

 </Tasks>

 </Options>

 </Scheduler>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

A task can expose additional parameters, such as ID and Categories, to help identify the task

when the system is running.

4.7.3 Defining a Trigger

A task cannot run if there are no triggers associated with it. Each trigger is a unique instance, so

you can register multiple triggers of the same type. For example, two interval triggers could be

registered that trigger a task at different polling intervals:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <Scheduler>

 <Options>

 <Tasks>

 <CustomTask>

 <TaskDefinition Type="Custom.Task, Custom" BindOptions="property">

 <Options>

 <Id>Custom Task</Id>

 <Categories>

 <Custom>Custom</Custom>

 <Other>Other</Other>

 </Categories>

 </Options>

 </TaskDefinition>

 <TriggerDefinitions>

 <Interval1

Type="Sitecore.Framework.Scheduling.Triggers.IntervalTriggerDefinition,

Sitecore.Framework.Scheduling" BindOptions="property">

 <Options Interval="00:10:00" /> <!-- Raise every ten minutes -->

 </Interval1>

 <Interval2

Type="Sitecore.Framework.Scheduling.Triggers.IntervalTriggerDefinition,

Sitecore.Framework.Scheduling" BindOptions="property">

 <Options Interval="00:00:10" /> <!-- Raise every ten seconds -->

 </Interval2>

 </TriggerDefinitions>

 </CustomTask>

 </Tasks>

 </Options>

 </Scheduler>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

Sitecore Publishing Service Installation and Configuration Guide

47

© Copyright 2019, Sitecore - all rights reserved.

4.8 Content Availability

The content availability feature ensures that the valid version of an item is always available in the

target database at the time of publishing. In this way, you do not have to perform a publishing

operation every time an item version expires and the next version should be displayed.

You must enable content availability on the Content Delivery (CD) server and on the Content

Management (CM) server.

When you enable content availability and publish an item, the currently valid item version and all

the versions that are valid for future publishing are moved from the source database to the

target database. A new pipeline that is enabled in the content availability configuration file

automatically clears the Sitecore item cache when an item version expires and then, when a

contact accesses the item, the next valid version is displayed.

Important

If you are using HTML caching on a rendering, the Sitecore item cache does not automatically

clear. In addition, if you use a data source inside a rendering, and if the data source item

switches to display a new version, the hosting rendering is not updated because there is nothing

that indicates that an update of a dependant data source has been triggered.

4.8.1 Configure Content Availability on the CD and CM Servers

To configure content availability on the CD server and on the CM server:

1. Place the DLL Sitecore.Publishing.Service.Delivery.dll in the bin directory of

the CD server.

2. Copy the Sitecore.Publishing.Service.ContentAvailability.config file to the

CD server and enable it.

3. If you use Solr for content search, enable the

Sitecore.Publishing.Service.ContentAvailability.solr.config file.

4. Restart your instance.

When an item is indexed the computed fields below stores the valid inception and expiry dates

for each version. When a query is issued to content search then the isAvailable flag is checked to

ensure the hiding and display of the valid versions in a search context that matches the

behaviour of the Item API.

The content availability functionality adds the following new fields:

• Computed fields:

o versionsunrisedate

o versionsunsetdate

o publishablefrom

o publishableto

• Virtual field

o isAvailable

Sitecore Publishing Service Installation and Configuration Guide

48

© Copyright 2019, Sitecore - all rights reserved.

Publishing Service Setup

To enable content availability in the Publishing Service:

1. In the config directory of the Publishing Service, enable the

sc.publishing.contentavailability.xml file.

2. Restart the Publishing Service.

3. With DEBUG logging enabled, ensure that the Content Availability status is set to ON.

When the content availability is enabled, the:

• Filter items pipeline enables publication checks on items as they come out of the

database.

• GetLinqFilter processor and VirtualField amend a publication check to each LINQ query

going out so that non-published data does not show.

Important

It is possible to misconfigure an items validity period so that it becomes invalid and disappears.

For example, if you set the PublishFrom field to 02nd January 2017 and the PublishTo field to 1st

January 2017, the item does not have a valid date range that allows the item to be displayed. In

Content Editor, in the Publishing Viewer, you can to see a visual representation of the date range

of an item or item version and diagnose these sorts of errors.

Sitecore Publishing Service Installation and Configuration Guide

49

© Copyright 2019, Sitecore - all rights reserved.

4.9 Transient Error Tolerance for SQL Azure

If you host any application databases in SQL Azure, Microsoft recommends that you implement a

retry strategy for all the database requests to overcome any transient errors that might occur

due to the nature of a shared cloud infrastructure.

Note

For more information about transient errors in SQL Azure, see:

http://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-

data-access-layer-transient-fault-handling.aspx#Timeouts_amp_Connection_Management.

The Publishing Service provides an implementation of this retry behavior for ADO.NET database

requests, however, you must explicitly enable the behavior via configuration according to which

databases are hosted on SQL Azure:

• The retry behavior is defined in …\config\azure\sc.publishing.sqlazure.xml.

• A typical configuration setup is provided with the Publishing Service in

…\config\azure\sc.publishing.sqlazure.connections.xml.example. Edit this

file accordingly and enable it by removing the .example extension.

For more information about editing this file, see the section SQL Azure Configuration.

Because both files are supplied in the Azure environment folder, you must start the service with

the environment setting set to Azure. You can move these files into a different environment

folder to achieve a different behavior.

4.9.1 Connection Behaviors

By default, the Publishing Service comes with the concept of connection behaviors that provide

the opportunity for transient errors to be mitigated seamlessly in the application for ADO.NET

connections.

When submitting a request to the database in the Publishing Service with ADO.NET, a connection

behavior is chosen according to the connection used and the context in which the request is

made.

The context is a Data Access Context, which is either api or backend, depending on the type of

work that is performed in each part of the system:

• api – when the data is being processed to serve a request for information from an out-of-

process component (for example, the publishing service API).

• backend – when data is being processed as part of a background operation (for example,

a publishing job).

Note

Microsoft recommends that you configure the api and backend contexts differently with regards

to transient error handling.

A connection behavior is essentially a component that can wrap each command sent to the

database, and thereby catch any exceptions that get returned, and repeat the command any

number of times if necessary.

http://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx
http://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx

Sitecore Publishing Service Installation and Configuration Guide

50

© Copyright 2019, Sitecore - all rights reserved.

By default, the Publishing Service is configured with a no retry connection behavior for all

connections and contexts, which is essentially a null behavior that does not provide any

additional logic.

4.9.2 Default Configuration

The connection behaviors are configured in the

Settings\Sitecore\Services\DbConnectionBehaviours section of the configuration. The

connection behavior used when a request is made to a database is chosen according to the

current Data Access Context, and the name of the connection behavior configured for the

current connection.

The following sample is an extract from the default configuration for the Service connection,

where you can see that the Service connection is configured to use the sql-backend-default and

sql-api-default behaviors for the api and backend contexts respectively.

<Service>

 <Type>Sitecore.Framework.Publishing.Data.AdoNet.SqlDatabaseConnection,

 Sitecore.Framework.Publishing.Data</Type>

 <LifeTime>Transient</LifeTime>

 <Options>

 <ConnectionString>${Sitecore:Publishing:ConnectionStrings:Service}</ConnectionString>

 <DefaultCommandTimeout>120</DefaultCommandTimeout>

 <Behaviours>

 <backend>sql-backend-default</backend>

 <api>sql-api-default</api>

 </Behaviours>

 </Options>

</Service>

The following sample is an extract from the default configuration of the two connection

behaviors. This configuration defines the command time and a retryer (by name) that are used

for the connection behavior.

The retryers section within the sc.publishing.services.xml defines the configuration of the

available retryers.

<DbConnectionBehaviours>

 <Options>

 <Entries>

 <!-- Used for all DatabaseConnections created in backend contexts (typically

publishing jobs). -->

 <sql-backend-default>

<Type>Sitecore.Framework.Publishing.Data.AdoNet.NoRetryConnectionBehaviour,

Sitecore.Framework.Publishing.Data</Type>

 <Options>

 <Name>Default Backend No Retry behaviour</Name>

 <CommandTimeout>120</CommandTimeout>

 <Retryer>NoRetryer</Retryer>

 </Options>

 </sql-backend-default>

 <!-- Used for all DatabaseConnections created in API contexts. -->

 <sql-api-default>

 <Type>Sitecore.Framework.Publishing.Data.AdoNet.NoRetryConnectionBehaviour,

Sitecore.Framework.Publishing.Data</Type>

 <Options>

 <Name>Default Api No Retry behaviour</Name>

 <CommandTimeout>10</CommandTimeout>

 <Retryer><NoRetryer/Retryer>

 </Options>

 </sql-api-default>

 </Entries>

 </Options>

</DbConnectionBehaviours>

Sitecore Publishing Service Installation and Configuration Guide

51

© Copyright 2019, Sitecore - all rights reserved.

4.9.3 SQL Azure Configuration

The connection behaviors in the Publishing Service are aligned with the recommendations from

Microsoft on mitigating transient errors in SQL Azure. They are specified in the

…\config\azure\sc.publishing.sqlazure.xml file.

If you are not running the Publishing Service in Azure, the sc.publishing.sqlazure.xml file

should be applied as a configuration patch. For more information, see the section Publishing

Targets.

In this file, the following two connection behaviors are added:

<sql-backend-azure>

 <Type>Sitecore.Framework.Publishing.Data.AdoNet.ConnectionRetryBehaviour,

Sitecore.Framework.Publishing.Data</Type>

 <Options>

 <Name>SQL Azure Backend Exponential Backoff</Name>

 <CommandTimeout>120</CommandTimeout>

 <Retryer>DefaultExponentialRetry</Retryer> </Options>

 </sql-backend-azure>

 <sql-api-azure>

 <Type>Sitecore.Framework.Publishing.Data.AdoNet.ConnectionRetryBehaviour,

Sitecore.Framework.Publishing.Data</Type>

 <Options>

 <Name>SQL Azure API Fixed Backoff</Name>

 <CommandTimeout>10</CommandTimeout>

 <Retryer>DefaultFixedIntervalRetry</Retryer>>

 </Options>

 </sql-api-azure>

The two connection behaviors use the Transient Fault Handling Application Block from Microsoft

to perform the retrying, and to identify a failure as being a transient failure.

For more information, see http://topaz.codeplex.com/.

To use these connection behaviors, the ADO.NET connections that represent databases hosted

on SQL Azure must be configured to use them.

In the …\config\azure\sc.publishing.sqlazure.connections.xml.example file, you

can see an example of how this configuration should be specified. It specifies the configuration

to set all connections to use the SQL Azure connection behaviors and must be edited according

to the deployment:

<Sitecore>

 <Publishing>

 <Services>

 <DefaultConnectionFactory>

 <Options>

 <Connections>

 <Links>

 <Options>

 <Behaviours>

 <backend>sql-backend-azure</backend>

 <api>sql-api-azure</api>

 </Behaviours>

 </Options>

 </Links>

 <Service>

 <Options>

 <Behaviours>

http://topaz.codeplex.com/

Sitecore Publishing Service Installation and Configuration Guide

52

© Copyright 2019, Sitecore - all rights reserved.

 <backend>sql-backend-azure</backend>

 <api>sql-api-azure</api>

 </Behaviours>

 </Options>

 </Service>

 <Master>

 <Options>

 <Behaviours>

 <backend>sql-backend-azure</backend>

 <api>sql-api-azure</api>

 </Behaviours>

 </Options>

 </Master>

 <Internet>

 <Options>

 <Behaviours>

 <backend>sql-backend-azure</backend>

 <api>sql-api-azure</api>

 </Behaviours>

 </Options>

 </Internet>

 </Connections>

 </Options>

 </DefaultConnectionFactory>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

Sitecore Publishing Service Installation and Configuration Guide

53

© Copyright 2019, Sitecore - all rights reserved.

4.10 Reporting Field Changes

By default, the Publishing Service reports on field changes that occur on a number of standard

fields. The field changes are available in the publishEndResultBatch pipeline that has a

processor with args of Sitecore.PublishEndResultBatchArgs in the

Sitecore.PublishEndResultBatchArgs processor.

The ReportPublishFieldsResolver service in the sc.publishing.services.xml

configuration file specifies the fields in which changes will be reported. You can add additional

fields into the ReportPublishFieldResolver service, for example:

<ReportPublishFieldsResolver>

<options>

 <!-- Shared fields -->

 <AdditionalInvariantItemFieldsIds>

 <f1>Field Guid Here</f1>

 <f2>Field Guid Here</f2>

 </AdditionalInvariantItemFieldsIds>

 <!-- Unversioned fields -->

 <AdditionalLanguageVariantFieldsIds>

 <f1>Field Guid Here</f1>

 <f2>Field Guid Here</f2>

 </AdditionalLanguageVariantFieldsIds>

 <!-- Versioned fields -->

 <AdditionalVariantFieldsIds>

 <f1>Field Guid Here</f1>

 <f2>Field Guid Here</f2>

 </AdditionalVariantFieldsIds>

</options>

</ReportPublishFieldsResolver>

Sitecore Publishing Service Installation and Configuration Guide

54

© Copyright 2019, Sitecore - all rights reserved.

4.11 Logging Configuration

The Microsoft Extensions Logging framework is used throughout the system to emit log

messages.

For more information, see: https://github.com/aspnet/Logging.

Serilog is the default logging provider configured in the Host. This comes with many sinks that

can be configured for many use cases. For more information, see:

https://github.com/serilog/serilog/wiki/Provided-Sinks.

Note

By default, a single file sink is configured.

The Microsoft Extensions Logging framework is based on the concept of logging levels, which are

defined below in the order of significance:

• Trace

• Debug

• Information

• Warning

• Error

• Critical

• None

Each component that emits log messages in the system, by convention, does this through a

logger object named with the fully qualified class name of the owning component. Therefore,

there are many named loggers across the system that each emit log messages on any of the

above levels.

4.11.1 Log configuration location

You can find the default logging configuration in the config/sitecore/sc.logging.xml file

of the publishing service installation location.

You can see an example of a logging override configuration in the config/development/

sc.logging.development.xml file of the publishing service installation location.

4.11.2 Configuring Logger Levels (Filters)

The level of messages that each named logger is permitted to emit can be specified in the

configuration.

The Filters section in the example below, specifies the minimum logging level for all loggers

that have a name with a matching prefix.

https://github.com/aspnet/Logging
https://github.com/serilog/serilog/wiki/Provided-Sinks

Sitecore Publishing Service Installation and Configuration Guide

55

© Copyright 2019, Sitecore - all rights reserved.

For example, <Sitecore>Information</Sitecore> specifies that only log messages at the

Information level or above will be emitted by loggers created in the Sitecore namespace.

• To enable logging at other levels throughout the system, add additional entries, for

example:

<Sitecore.Framework.Publishing.DataPromotion>Debug</Sitecore.Framewor

k.Publishing.DataPromotion>

If no matched filter is found, the Default log level filter is used:

<Settings>

 <Sitecore>

 <Publishing>

 <Logging>

 <Filters>

 <Sitecore>Information</Sitecore>

 <Default>Warning</Default>

 </Filters>

 </Logging>

 </Publishing>

 </Sitecore>

</Settings>

• To customize the log levels, you override or add additional log filters. The following

example adds a configuration for types in the My.Custom.Code namespace to log at the

Debug level. It also changes loggers in the Sitecore.Framework.Schedeling namespace to

log at the Debug level:

<Settings>

 <Sitecore>

 <Publishing>

 <Logging>

 <My.Custom.Code>Debug</My.Custom.Code>

 <Sitecore.Framework.Scheduling>Debug</Sitecore.Framework.Scheduling>

 </Logging>

 </Publishing>

 </Sitecore>

</Settings>

4.11.3 Configuring Serilog

The Serilog provider can be configured with many sinks. This configuration the default logging

configuration for Serilog:

<Settings>

 <Sitecore>

 <Publishing>

 <Logging>

 <Filters>

 …

 </Filters>

 <Serilog>

 <WriteTo>

 <DefaultLogger>

 <Name>RollingFile</Name>

 <Args>

 <pathFormat>logs\Publishing-{Date}.log</pathFormat>

 </Args>

 </DefaultLogger>

 </WriteTo>

 </Serilog>

 </Logging>

 </Publishing>

 </Sitecore>

</Settings>

Sitecore Publishing Service Installation and Configuration Guide

56

© Copyright 2019, Sitecore - all rights reserved.

4.11.4 Console and File Sinks

Serilog supports many different sinks, each sink type is delivered in its own Nuget package. The

Publishing Service comes with the console and file sinks included.

The default configuration above tells Serilog to put all logs produced by the service into a logs

folder stored at the application install path, and log messages are persisted to a log file called

Publishing-<date>.log, where <date> is the current date.

Logs files are treated as rolling files, where logging information is added to the file with the

current date. If the log file does not exist, it is created.

You can patch in more sinks with other configuration files or replace the default one. The

config/development/sc.logging.development.xml file adds a console logger. For

example:

<Settings>

 <Sitecore>

 <Publishing>

 <Logging>

 <Filters>

 …

 </Filters>

 <Serilog>

 <WriteTo>

 <DevLogger>

 <Name>LiterateConsole</Name>

 </DevLogger>

 </WriteTo>

 </Serilog>

 </Logging>

 </Publishing>

 </Sitecore>

</Settings>

For more information on how to provide the arguments to define the parameters for these sinks,

see https://github.com/serilog/serilog-settings-configuration.

For more information on the console and file logging sinks, see

https://github.com/serilog/serilog-sinks-literate and https://github.com/serilog/serilog-sinks-
rollingfile.

4.11.5 Other Sinks

Serilog also supports other persistence stores for log messages:

https://github.com/serilog/serilog/wiki/Provided-Sinks

To configure sinks other than Console and Rolling File for the Publishing Service:

1. Copy all the DLLs required by the sink into the Publishing Service Host directory that

contains all the Service DLLs.

2. Specify the DLL name in a using element in the Serilog configuration.

3. Configure the sink in the WriteTo section in the same way as Console and Rolling File.

Here is an example of how the Azure DocumentDB can be used to store log messages:

 <Serilog>

 <Using>

 <DocumentDb>Serilog.Sinks.AzureDocumentDB</DocumentDb>

 </Using>

https://github.com/serilog/serilog-settings-configuration
https://github.com/serilog/serilog-sinks-literate
https://github.com/serilog/serilog-sinks-rollingfile
https://github.com/serilog/serilog-sinks-rollingfile
https://github.com/serilog/serilog/wiki/Provided-Sinks

Sitecore Publishing Service Installation and Configuration Guide

57

© Copyright 2019, Sitecore - all rights reserved.

 <WriteTo>

 <AzureLogger>

 <Name>AzureDocumentDB</Name>

 <Args>

 <endpointUri>…azure document db endpoint…</endpointUri>

 <authorizationKey>…authorization key…</authorizationKey>

 <timeToLive>3600</timeToLive>

 </Args>

 </AzureLogger>

 </WriteTo>

 <WriteTo>

 <DevLogger>

 <Name>LiterateConsole</Name>

 </DevLogger>

 </WriteTo>

 </Serilog>

One advantage of persisting logs to a document-based database like the Azure DocumentDB, is

that each log message is persisted as an object, with properties that describe the context in

which the log message was emitted. Log messages can then be queried dynamically.

Sitecore Publishing Service Installation and Configuration Guide

58

© Copyright 2019, Sitecore - all rights reserved.

4.12 Excluding Items from Automatic Deletion from the Target

Databases

When you publish all items, the Publishing Service deletes any items in the target databases that

do not appear in the source database.

If there are sections of your content tree or items based on a specific template, for example, user

generated content or content added from other sources, that you do not want removed

automatically from the target databases, you can create a configuration file that contains the

relevant item IDs of the sections and templates.

You create the configuration file using the patching mechanism.

• Under the IgnoreChildrenOfItemIds node, add the item IDs of sections that you

want to keep in the target databases.

• Under the IgnoredTemplateIds node, add the item IDs of the templates that you want

to keep in the target databases. In this way, the items based on the specified templates

will not be removed from the target databases.

For example:

<Settings>

 <Sitecore>

 <Publishing>

 <Services>

 <TreeChangesPublishHandler>

 <Options>

 <IgnoreChildrenOfItemIds>

 <UserGeneratedContent>{b00accaf-ce86-408e-b606-

4120356fb8cf}</UserGeneratedContent>

 <OtherContentSection>{a9173544-5664-4549-ad02-

06d5586cb855}</OtherContentSection>

 </IgnoreChildrenOfItemIds>

 <IgnoredTemplateIds>

 <UserGeneratedContent>{a9173544-5664-4549-ad02-

06d5586cb855}</UserGeneratedContent>

 </IgnoredTemplateIds>

 </Options>

 </TreeChangesPublishHandler>

 <TreePublishHandler>

 <Options>

 <IgnoreChildrenOfItemIds>

 <UserGeneratedContent>{b00accaf-ce86-408e-b606-

4120356fb8cf}</UserGeneratedContent>

 <OtherContentSection>{a9173544-5664-4549-ad02-

06d5586cb855}</OtherContentSection>

 </IgnoreChildrenOfItemIds>

 <IgnoredTemplateIds>

 <UserGeneratedContent>{a9173544-5664-4549-ad02-

06d5586cb855}</UserGeneratedContent>

 </IgnoredTemplateIds>

 </Options>

 </TreePublishHandler>

 </Services>

 </Publishing>

 </Sitecore>

</Settings>

Sitecore Publishing Service Installation and Configuration Guide

59

© Copyright 2019, Sitecore - all rights reserved.

4.13 Configuring the Publishing Service to use Azure Application

Insights

The Publishing Service supports integration with Azure Application Insights. Application Insights

provides a lot of information about your instances of the Sitecore Publishing Service.

To get the most out of the data that you are capturing with Application Insight, review the

Microsoft Azure Application Insights documentation.

Note

The Publishing Service only uses the Azure Application Insights for telemetry data, such as server

response times, resource utilization, number of requests, and so on. The Publishing Service logs

are written to the log files that are defined in the Publishing Service configuration.

4.13.1 Prerequisites

To configure the Publishing Service to use Azure Application Insights, you must have a Microsoft

Azure subscription and at least one Application Insights instrumentation key from an active

Application Insights service.

• To create an Application Insights service, refer to the Microsoft Azure documentation.

When you have a running Application Insights service, you find the instrumentation key in the

Essentials panel.

4.13.2 Configure the Publishing Service to use Application Insights

To configure the Publishing Service to use Application Insights, you edit the appsettings.json

file in the root directory of the Publishing Service.

For example, if you have installed the Publishing Service to

C:\inetpub\wwwroot\SitecorePublishingService, then the path to your appsettings.json file is

C:\inetpub\wwwroot\SitecorePublishingService\appsettings.json.

The file must contain the following code, where you populate the value of the InstrumentationKey

property with the one from your own Application Insights service.

{

 "ApplicationInsights": {

 "InstrumentationKey": ""

 }

}

https://docs.microsoft.com/en-us/azure/application-insights/
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-dotnetcore-quick-start

Sitecore Publishing Service Installation and Configuration Guide

60

© Copyright 2019, Sitecore - all rights reserved.

You can also supply the configuration files for different environments using different

instrumentation keys. For example, if you want to use a different instrumentation key in a

development environment, then you can create an appsettings.development.json file in

the root directory of the Publishing Service and use a different value for the InstrumentationKey

property.

Note

The appsettings.<environment>.json file that you use matches the environment that is

configured for the Publishing Service. For more information, see the section about Host

Configuration Options.

4.13.3 Adding Serilog.Sinks.ApplicationInsights

The Sitecore Publishing Service uses the Serilog logging framework to generate log information

at runtime. Microsoft Application Insights can also be configured to log information on the Azure

platform. Serilog also provides the ability to communicate with Microsoft Application Insights. By

combining the two, the Publishing Service can publish structured logs to Application Insights,

enabling management of logs within the Azure platform.

When Application Insights is configured, you must configure Serilog to send logging formation to

Application Insights by adding an additional library to your Publishing Service.

To configure Serilog to send logging formation to Application Insights:

1. Download Serilog.Sinks.ApplicationInsights version 2.6.0 from nuget.org.

2. Open the nuget package and copy the

\lib\net45\Serilog.Sinks.ApplicationInsights.dll file into the root folder of

the Publishing Service that you have deployed.

3. Create a configuration file called sc.customlogging.xml and add the following:

<Settings>

 <Sitecore>

 <Publishing>

 <Logging>

 <Serilog>

 <WriteTo>

 <AppInsightsLogger>

 <Name>ApplicationInsightsTraces</Name>

 <Args>

 <instrumentationKey>c68d16ec-4df4-4d7a-85a3-

632687961c82</instrumentationKey>

 </Args>

 </AppInsightsLogger>

 </WriteTo>

 </Serilog>

 </Logging>

 </Publishing>

 </Sitecore>

</Settings>

4. Update the <instrumentationKey> to your own value.

5. Add this configuration file to the Publishing Service \config\global folder.

Sitecore Publishing Service Installation and Configuration Guide

61

© Copyright 2019, Sitecore - all rights reserved.

Perform a few publishes and within a few minutes you’ll be able to see the trace entries that

are logged.

Sitecore Publishing Service Installation and Configuration Guide

62

© Copyright 2019, Sitecore - all rights reserved.

4.14 Troubleshooting

If you receive an error where the Internet Information Services (IIS) cannot read the application

configuration, ensure you have installed all the prerequisites.

• If you receive a 502 - Bad Gateway error when you visit your site, check the logs for

details.

• After fixing any errors, restart your application pool and try again.

Sitecore Publishing Service Installation and Configuration Guide

63

© Copyright 2019, Sitecore - all rights reserved.

Chapter 5

High Availability Configuration of the Sitecore

Publishing Service

This chapter describes how you can support high availability requirements by

deploying multiple instances of the Publishing Service to use the same database.

• Introduction

• On premise

• Azure

• Configuration (Advanced)

• Supported Deployment Models

Sitecore Publishing Service Installation and Configuration Guide

64

© Copyright 2019, Sitecore - all rights reserved.

5.1 Introduction

When multiple Publishing Service instances are running, all of them can receive web-API calls.

However, only one instance will have the job system active and therefore perform the actual

publishing jobs. If the active instance fails, another instance will become active. This happens

automatically because of a heartbeat protocol that is implemented via the service database.

Each service instance will request ownership of a logical lock, stored in the database, on a given

schedule. Only one instance at a time can own this lock. Ownership is obtained if either there is

no lock existing already, or if the current owner has not renewed the lock within a configured

lifetime threshold. With the default settings, the maximum time taken to failover to a new active

instance is 15 seconds, the minimum is 10 seconds.

5.1.1 Workflow

The following steps describe the workflow of when more than one Publishing Service is running

against the same set of databases:

1. The service instance gets assigned a random unique name at start up, or the name can

be specified explicitly in the configuration. The algorithm for generating the service name

can be replaced by providing another implementation of the IServiceInformation

interface.

For more information about assigning a specific name to a server instance, see the

section On premise.

2. When the service is started, the heartbeat protocol will kick off and the first instance that

can access the Publishing_ActivationLock table will be set as active to enable the job

system.

3. All the other instances will remain inactive, they will be able to receive API calls, but the

jobs will only run on the active instance. For example, if a job is enqueued using an

inactive instance, the active instance will pick it up within 10 seconds.

4. If the active instance fails, it will stop renewing the activation lock in the database. After

the lock lifetime has passed, another inactive instance will be able to acquire the lock,

and hence set itself as an active instance. It will then enable its job system to start

processing the jobs in the queue.

5. Any job that was running when the previously active instance crashed will be

automatically started by the new active instance.

Sitecore Publishing Service Installation and Configuration Guide

65

© Copyright 2019, Sitecore - all rights reserved.

5.2 On premise

In a high-availability environment, multiple instances of the Publishing Service need to be

running behind a load balancer.

No special configuration is needed. However, each instance can be configured with a unique

name. The configuration element is:

<Settings>

 <Sitecore>

 <Publishing>

 <InstanceName>${SITECORE_InstanceName}</InstanceName>

 </Publishing>

 </Sitecore>

</Settings>

The instance name can be assigned through configuration, an environment variable, or a

command line parameter. The instance name is used in logging and in the Database

Publishing_ActivationLock table that shows the current active instance.

Sitecore Publishing Service Installation and Configuration Guide

66

© Copyright 2019, Sitecore - all rights reserved.

5.3 Azure

The Publishing Service can be installed as an Azure Application Service. There is no configuration

needed in order to enable the high-availability functionality.

To install the Publishing Service as an Azure Application Service:

1. In the Azure portal, select a tier that allows you to use scaled-out configuration, for

example, Tier B1 where you can have up to three instances.

2. Under Settings, click the Scale out option, and then drag the slider to specify the

number of instances.

Sitecore Publishing Service Installation and Configuration Guide

67

© Copyright 2019, Sitecore - all rights reserved.

5.4 Configuration (Advanced)

The Publishing Service comes with defaults for the activation strategy. However, there are some

parameters that can be configured if it is found that the active instance is being switched by

mistake.

The following options can be configured:

• LockAttemptIntervalInSeconds – specify the interval in seconds that the service

should use to obtain the activation lock.

• LockRenewalIntervalInSeconds – if the service already owns the lock, specify the

interval in seconds that the service should use to renew the activation lock.

• LockLifetimeInSeconds – specify the interval in seconds after which the service

should lose the activation lock if it hasn't renewed it, for example, in the situation where

the service is inactive.

Important

Each instance must be configured with the same settings.

Sitecore Publishing Service Installation and Configuration Guide

68

© Copyright 2019, Sitecore - all rights reserved.

5.5 Supported Deployment Models

The high availability (HA) of the publishing service means that it can be used in the following

configurations:

• Running on Azure as a scaled-out application service.

• Running multiple instances on multiple computers or VMs.

• Running multiple instances on the same machine. While this is not technically a high-

availability setup, it can benefit testing.

Sitecore Publishing Service Installation and Configuration Guide

69

© Copyright 2019, Sitecore - all rights reserved.

Chapter 6

Publishing Service API

Every interaction between the Sitecore Publishing Service module in Sitecore and

the Sitecore Publishing Service is performed with web requests to the Publishing

Service web API.

Consumers that want to interact directly with the Publishing Service can also use

the Publishing Service web API.

This chapter contains the following section:

• API documentation

Sitecore Publishing Service Installation and Configuration Guide

70

© Copyright 2019, Sitecore - all rights reserved.

6.1 API documentation

Swagger libraries of all the API endpoints are available for the Publishing Service.

Important

If the Publishing Service is running in a development environment, you can access the Swagger UI

at http://localhost:5000/swagger/index.html

The main Swagger dashboard describes all the endpoints that the Publishing Service exposes.

You can explore the different API versions and the endpoints from the dashboard as well as

invoke and test the API methods.

To generate Swagger specification files (swagger.json) for the Publishing Service APIs, use the

apigen command:

$ Sitecore.Framework.Publishing.Host apigen [target-path]

In this example, [target-path] is the folder where the apigen command saves the

specification files.

http://localhost:5000/swagger/index.html

Sitecore Publishing Service Installation and Configuration Guide

71

© Copyright 2019, Sitecore - all rights reserved.

Chapter 7

Upgrading to Version 4.1.0

You can upgrade to Sitecore Publishing Service version 4.1.0 from versions 3.1.x

and 4.0.x.

This chapter contains the following section:

• Upgrading the Publishing Service

Sitecore Publishing Service Installation and Configuration Guide

72

© Copyright 2019, Sitecore - all rights reserved.

7.1 Upgrading the Publishing Service

Before you upgrade to a new version of the Publishing Service, make sure you create a backup of

the existing Publishing Service directory.

To upgrade the Publishing Service:

1. Ensure that you meet the prequisites for the Publishing Service.

2. For the installed Publishing Service instance, stop the IIS application pool.

3. Extract the content of the Sitecore Publishing Service 4.1.0.zip file to the

existing Publishing Service directory and choose to replace all files.

4. Use the Sitecore.Framework.Publishing.Host configuration and the

setconnectionstring command to reconfigure your connection string.

5. Start the IIS application pool again.

Sitecore Publishing Service Installation and Configuration Guide

73

© Copyright 2019, Sitecore - all rights reserved.

Chapter 8

Publishing Service Support Matrix

Starting with Sitecore XP 9.2.0, the Sitecore Publishing Service Module uses the same version

number as the Sitecore Platform and not the Publishing Service. The Publishing Service still uses

its own version numbering.

We recommend updating to the latest version of the Publishing Service and Publishing Service

Module at the earliest opportunity. The support matrix details which versions of the Sitecore

Platform are supported:

Sitecore Platform Publishing Service Module Publishing Service

8.2 Initial Release – 8.2 Update 1 1.1 Initial Release 1.1 Initial Release

8.2 Update-2 2.0 Initial Release 2.0 Initial Release

8.2 Update-2 – 8.2 Update-3 2.0 Update-1 2.0 Update-1

8.2 Update-2 – 8.2 Update-5 2.1 Initial Release 2.1 Initial Release

8.2 Update-2 – 8.2 Update-7 2.2 Initial Release 2.2 Initial Release

8.2 Update-2 – 8.2 Update-7 2.2 Update-1 2.2 Update-1

9.0 Initial Release 3.0 Initial Release 3.0 Initial Release

9.0 Initial Release – 9.0 Update-1 3.1 Initial Release 3.1 Initial Release

9.0 Initial Release – 9.0 Update-2 3.1 Update-1 3.1 Update-1

9.0 Initial Release – 9.0 Update-2 3.1 Update-2 3.1 Update-2

9.0 Initial Release – 9.0 Update-2 3.1 Update-3 3.1 Update-3

9.1 Initial Release 4.0 Initial Release
9.1 Initial Release

4.0 Initial Release
4.1 Initial Release

9.1 Update-1 4.0 Initial Release 4.0 Initial Release

9.2 Initial Release 9.2 Initial Release 4.1 Initial Release

	Chapter 1 Introduction
	1.1 About the Publishing Service Module
	1.1.1 Publishing Service Concepts

	Chapter 2 Installing the Sitecore Publishing Service
	2.1 Prerequisites
	2.1.1 Sitecore Publishing Service Requirements

	2.2 Manual Installation
	2.3 Scripted Installation
	2.3.1 Scaled Environment Considerations

	Chapter 3 Sitecore Publishing Service Commands
	3.1 Introduction
	3.1.1 General Execution Format
	3.1.2 Logs

	3.2 Web Command
	3.2.1 Host Configuration Options
	3.2.2 Custom Configuration Values

	3.3 IIS Command
	3.3.1 Install Options

	3.4 Configuration Command
	3.4.1 Set Commands
	3.4.2 SetConnectionString Command

	3.5 Schema Command
	3.5.1 Upgrade
	3.5.2 Downgrade
	3.5.3 Reset
	3.5.4 List

	3.6 Diagnostics Command
	3.6.1 Revision

	Chapter 4 Configuring the Sitecore Publishing Service
	4.1 Publishing Targets
	4.2 Configuration Sources
	4.2.1 Configuration File Naming

	4.3 Adding Configuration Values
	4.3.1 Overriding Configuration Values
	4.3.2 Referencing Configuration Values

	4.4 Configuring Options
	4.4.1 DatabaseConnectionOptions
	4.4.2 PublishHostOptions
	4.4.3 PublishJobHandlerOptions
	4.4.4 PromoterOptions
	4.4.5 PromotionCoordinatorOptions

	4.5 Database Configuration
	4.5.1 Connection Strings
	4.5.2 DefaultConnectionFactory
	4.5.3 StoreFactory
	4.5.4 StoreFeatureLists
	4.5.5 Custom Data Providers

	4.6 Schema Configuration
	4.6.1 The Deployment Map
	4.6.2 Schemas
	4.6.3 Validating Schemas

	4.7 Task Scheduling
	4.7.1 Task Configuration
	PublishTask
	PublishJobCleanUpTask

	4.7.2 Defining a Task
	4.7.3 Defining a Trigger

	4.8 Content Availability
	4.8.1 Configure Content Availability on the CD and CM Servers
	Publishing Service Setup

	4.9 Transient Error Tolerance for SQL Azure
	4.9.1 Connection Behaviors
	4.9.2 Default Configuration
	4.9.3 SQL Azure Configuration

	4.10 Reporting Field Changes
	4.11 Logging Configuration
	4.11.1 Log configuration location
	4.11.2 Configuring Logger Levels (Filters)
	4.11.3 Configuring Serilog
	4.11.4 Console and File Sinks
	4.11.5 Other Sinks

	4.12 Excluding Items from Automatic Deletion from the Target Databases
	4.13 Configuring the Publishing Service to use Azure Application Insights
	4.13.1 Prerequisites
	4.13.2 Configure the Publishing Service to use Application Insights
	4.13.3 Adding Serilog.Sinks.ApplicationInsights

	4.14 Troubleshooting

	Chapter 5 High Availability Configuration of the Sitecore Publishing Service
	5.1 Introduction
	5.1.1 Workflow

	5.2 On premise
	5.3 Azure
	5.4 Configuration (Advanced)
	5.5 Supported Deployment Models

	Chapter 6 Publishing Service API
	6.1 API documentation

	Chapter 7 Upgrading to Version 4.1.0
	7.1 Upgrading the Publishing Service

	Chapter 8 Publishing Service Support Matrix

