
Sitecore XP 10.3.1 Production
Deployment With Kubernetes
How to deploy Sitecore Experience Platform 10.3.1 to a container installation using
Kubernetes.

July 19, 2023

Table of Contents
1. Introduction to Azure Kubernetes Service .. 4

1.1. Supported Sitecore topologies for Kubernetes .. 4
1.1.1. XM Server (XM Scaled) .. 4
1.1.2. XP Server (XP Scaled) .. 5

1.2. Requirements for Sitecore on Azure Kubernetes Service ... 5
1.2.1. Sitecore Container Deployment Package .. 5
1.2.2. Client software requirements ... 6
1.2.3. Kubernetes Cluster software requirements .. 6
1.2.4. Kubernetes Cluster hardware requirements ... 6
1.2.5. Required external data services .. 7
1.2.6. Azure Kubernetes Service requirements ... 7
1.2.7. Ingress Controller requirements ... 7

1.3. Prepare for deploying to Azure Kubernetes Service ... 8
1.3.1. Understanding Sitecore Kubernetes specification files .. 8
1.3.2. Accessing the Sitecore container registry .. 8
1.3.3. Prepare the Kubernetes specification files for deployment ... 8
1.3.4. Change the database prefix .. 8
1.3.5. Deploying the Kubernetes Secrets .. 9
1.3.6. Compressing the Sitecore license file .. 9
1.3.7. Generating the Identity Server token signing certificate .. 10
1.3.8. Generating TLS/HTTPS certificates .. 10
1.3.9. Use a custom hostname ... 10
1.3.10. Using non-production container images for external services 11
1.3.11. Hosting external data services .. 11
1.3.12. Using submit queue persistent storage .. 12
1.3.13. Configuring the ingress controller service ... 12
1.3.14. Using a private container registry ... 12

2. Deploy Sitecore XP to the Azure Kubernetes Service .. 13
2.1. Deploy external data services .. 13
2.2. Create an AKS cluster .. 13
2.3. Configure the Kubectl context cluster .. 13
2.4. Deploy an ingress controller .. 14
2.5. Add grant a 'Contributor' access to your resource group for the Managed Identity 14
2.6. Deploy the secrets .. 15
2.7. Deploy external services for a non-production deployment ... 16
2.8. Deploy the data initialization jobs .. 16
2.9. Deploy a persistent volume claim .. 16
2.10. Deploy the Sitecore pods ... 17
2.11. Update the local host file ... 17
2.12. Configure the SolrCloud search indexes .. 17

3. Deploy custom modules .. 19
3.1. Add database updates to a module ... 19
3.2. Add Solr collections to a module ... 19

4. Appendices .. 21
4.1. Encode and compress the Sitecore license file ... 21
4.2. Create the Identity Server token signing certificate .. 22
4.3. Create the TLS/HTTPS certificates .. 22
4.4. Initialize data for SearchStax provider for Solr ... 23
4.5. The Kubernetes Secrets list ... 23
4.6. Solr-init image variables .. 26

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 2

4.7. Common issues .. 27
4.7.1. I cannot upload a Translations file to the website root folder 27
4.7.2. Only the main Sitecore log is exposed for Sitecore roles containers 28
4.7.3. When I request SSC, problems occur if there are underscores in header names 29
4.7.4. When I reference a CM service from my container, the connection fails 29

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 3

1. Introduction to Azure Kubernetes Service

Sitecore Experience Platform (SXP) uses Kubernetes (K8s) as the default orchestrator for deploying
production environments.

This guide describes how to deploy the SXP containers to the Azure Kubernetes Service (AKS). AKS is a
Microsoft cloud hosted Kubernetes service with additional functionality that takes advantage of Azure
specific features like blob storage and load balancing.

The SXP Kubernetes specification files you use to map the minimum required configuration
parameters between the Sitecore software containers are provided in the SXP container package
as a reference. You can extend these specifications to support your own requirements. It is your
responsibility to ensure that your production deployments meet the standards for stability and
security set by your organization.

The SXP for Kubernetes specification files are designed to avoid Azure specific dependencies where
possible.

1.1. Supported Sitecore topologies for Kubernetes

Sitecore XP supports the following topologies for use with Kubernetes:

• XM Server (XM Scaled)

• XP Server (XP Scaled)

1.1.1. XM Server (XM Scaled)
The Sitecore Experience Manager Server for Kubernetes topology, also known as XM1, is suitable for
use in both production and non-production environments.

The XM1 topology supports the following Sitecore roles:

Role type Sitecore role

Production Content Management

Content Delivery

Sitecore Identity Server

MSSQL Data Intialization Job

SolrCloud Data Initalization Job

Non-production Microsoft SQL Server

SolrCloud

RedisLabs Redis Server

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 4

1.1.2. XP Server (XP Scaled)
The Sitecore Experience Platform Server for Kubernetes topology, also known as XP1, is suitable for
use in both production and non-production environments.

If you are deploying the XP1 topology in a non-production environment for, for example, testing
purposes, be aware that mimicking the configuration of a production environment requires significant
resources.

The XP1 topology supports the following Sitecore roles:

Role type Sitecore role

Production Content Management

Content Delivery

Sitecore Identity Server

XDB Processing

XDB Collection service

XDB Search service

Marketing Automation Engine

Marketing Automation Reporting

XDB Reference Data service

Sitecore Cortex Processing service

Sitecore Cortex Reporting service

XDB Search Worker

Sitecore Cortex Processing

MSSQL Data Initialization Job

SolrCloud Data Initialization Job

Non-production Microsoft SQL Server

SolrCloud

RedisLabs Redis Server

1.2. Requirements for Sitecore on Azure Kubernetes Service

There are a number of requirements that your environment must fulfill before you can deploy
Sitecore containers in an Azure Kubernetes Service environment.

1.2.1. Sitecore Container Deployment Package
The Sitecore Container Deployment Package contains the Kubernetes specification files that you use
to deploy a Sitecore software cluster solution.

For more information about the supported topologies in the Sitecore Container Deployment Package,
see Supported Sitecore topologies for Kubernetes.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 5

https://dev.sitecore.net/downloads

1.2.2. Client software requirements
You must have the following software installed in order to install Sitecore Experience Platform on
Kubernetes:

• One of the following operating systems:

• Windows 10 1809 or later

• Windows Server 1809 or later

• Kubernetes 1.24.x or later. Use the latest stable non-preview version.

• To get a list of supported locations run the following command:

az account list-locations

• To get the latest stable version with the desired location, run the following command:

az aks get-versions --location <location> --output table

• Helm 3.0.x or later. This is required for ingress controller deployments.
We recommend that you use choco to install Helm. For example:

choco install kubernetes-helm

• Deploying the Sitecore specification files on AKS requires Azure CLI 2.8.0 or later.

You also need to download the following software package:

• Sitecore SXP 10.3.1 Container Deployment Package

1.2.3. Kubernetes Cluster software requirements

• Kubernetes 1.24.x or later

• Windows Server 2019 version 1809 or later

1.2.4. Kubernetes Cluster hardware requirements
Windows Server clusters have the following hardware requirements:

• RAM
We recommend a minimum of 16 GB RAM per Kubernetes cluster during startup.
Your operational requirements depend on your use of the Azure service.

• CPU
We recommend a quad core or higher per Kubernetes node during startup.
Your operational requirements depend on your use of the Azure service.

• Disk
We recommend premium SSD disks for optimal performance when downloading and running
Docker containers.
The operational capacity depends on the service that you use.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 6

https://docs.microsoft.com/en-us/azure/aks/ingress-basic
https://helm.sh/docs/intro/install/
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows?view=azure-cli-latest&tabs=azure-cli
https://dev.sitecore.net/Downloads/Sitecore_Experience_Platform.aspx

1.2.5. Required external data services
In production environments, external data services must be hosted outside the Sitecore XP cluster.

To reduce the time required for development and testing, sample external service deployments for
K8s are provided for non-production use only.

The following services are required:

• Microsoft SQL Server

• Microsoft SQL Server 2017 or 2019
or

• SQL Azure Elastic Database Pool

• Apache Solr 8.11.2 (SolrCloud mode)

• RedisLabs Redis 4.0 or higher

1.2.6. Azure Kubernetes Service requirements
To deploy Sitecore on Azure Kubernetes Service (AKS), you must meet the following requirements for
an AKS installation:

• An AKS cluster configured with the latest stable release of Kubernetes – version 1.24.x or later.

• One Windows Server 2019 version 1809 or later OS node.

• For non-production environments and testing, the recommended minimum VM size for
Windows and Linux nodes is Standard_D4s_v3.

• For production environments, the VM size and number of nodes depend on your individual
requirements.

To get the latest version of Kubernetes supported by AKS, run the following Azure CLI command:

az aks get-versions --location <location> --output table

NOTE
In the command, replace location with the region you want to check for.

1.2.7. Ingress Controller requirements
You must have a Kubernetes ingress controller to deploy the Sitecore Kubernetes specification files.

The Sitecore Kubernetes specification files work with most Ingress Controllers supported by
Kubernetes, but not all ingress controllers operate the same way. For more information, see the
third party documentation for the ingress controller configuration for production deployments.

To support client IP address tracking and personalization, you must configure the Ingress Controller
to preserve the client source IP address in the X-Forwarded-For HTTP header.

To fully enable IP address tracking and personalization, you must make some additional changes to
the Sitecore software configuration.

For more information about the Ingress Controller and Sitecore software configuration, see the
Ingress Controller service section.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 7

https://docs.microsoft.com/en-us/azure/aks/ingress-basic

1.3. Prepare for deploying to Azure Kubernetes Service
Before you start the process of deploying the Sitecore XP containers to Azure Kubernetes Service
(AKS), there are some concepts and procedures you need to be familiar with.

1.3.1. Understanding Sitecore Kubernetes specification files
Sitecore provides Kubernetes specification files (.yaml) that you use to deploy the containers to a
Kubernetes cluster.

You use the remote client Kubectl (Kube control) to configure the Kubernetes clusters and specify the
desired configuration state.

Kubectl is available as part of the Azure CLI and as a standalone.

1.3.2. Accessing the Sitecore container registry
The Sitecore XP container images are hosted in a public Docker container registry and are available
without authentication.

This public registry is the default registry used by the Sitecore Kubernetes specification files.

To start the Sitecore software container images, you must have a valid Sitecore license file.

The Sitecore Container Registry, which you access through Docker, is hosted at scr.sitecore.com
and supports the Docker content trust model that lets you pull signed images.

1.3.3. Prepare the Kubernetes specification files for deployment
To deploy the Sitecore Kubernetes specification files, you must use the Kubernetes Kubectl CLI.

To prepare for deployment:

1. Download the Sitecore Experience Platform Container Deployment Package from the Sitecore
download page, and extract it to a temporary folder on your installation.

2. Locate the k8s\<version>\<topology> folder, where <version> is your Windows version
and <topology> is the Sitecore topology you use. The folder can be, for example,
k8s\ltsc2019\xp1.

NOTE
Sitecore currently supports the Sitecore XP Server (XP1) and Sitecore XM Server
(XM1) topologies on Kubernetes.

3. To familiarize yourself with the specifications, inspect the folder contents and the Kubernetes
specification files (.yaml)

1.3.4. Change the database prefix
By default, Sitecore uses the prefix Sitecore when it deploys databases. You can replace the default
prefix with your own custom prefix. You have to do this before deploying the Sitecore databases.

NOTE
If you are deploying to an existing MS SQL environment, you must change the prefix to
your existing MS SQL prefix.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 8

https://docs.docker.com/engine/security/trust/content_trust
https://dev.sitecore.net/Downloads/Sitecore_Experience_Platform.aspx
https://dev.sitecore.net/Downloads/Sitecore_Experience_Platform.aspx

To use a custom prefix:

1. Open the sitecore-databaseprefix.txt secret file for editing.

2. In the file, replace Sitecore with your custom prefix. Save the file.

3. If the mssql-init image contains dacpac files for custom databases, open the sitecore-
custom-database-prefix-update-from.txt secret file for editing.

4. In the file, replace Sitecore with your prefix for the custom databases. Save the file.

1.3.5. Deploying the Kubernetes Secrets
Sitecore Kubernetes deployments use Secrets to securely store the strings the containers in the
cluster use.

The Secrets are used to store database user names, passwords, and TLS certificates. The Secrets are
configured in text files and certificate files (tls.crt and tls.key) and are stored in the Kubernetes
specification files for each topology in the ./secrets/ folder.

You must deploy the Secrets to the K8s cluster before you deploy any Sitecore containers.

You must update the Secret text files (.txt, .crt, .key) with the required values before you deploy
any additional resources to the K8s cluster.

NOTE
The content in secrets must be encoded in UTF-8 format.

For a complete list of Secrets and more information about the individual Secrets, see The Kubernetes
Secrets list.

In the Sitecore Experience Platform container package, in the
k8s\<version>\<topology>\secrets folder, there is a Kubectl kustomization.yaml file that
deploys all the Secret names and values with a single command.

1.3.6. Compressing the Sitecore license file
The Sitecore license file is typically passed to the container instances as an environment variable
in encoded string form. The Sitecore license file is very large. You must therefore compress and
Base64 encode it to ensure that it conforms with the maximum size allowed by Windows for all the
environment variables.

NOTE
The appendix Encode and compress the Sitecore license file contains a sample
PowerShell script that converts a license file into a Base64 compressed string for use in
a K8s secret.

When you have compressed and encoded the license file, copy the string value to the license secret
text file sitecore-license.txt.

Some Sitecore license files are so large that they are incompatible with containers even after
compression. This usually happens when the license file contains additional embedded HTML.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 9

https://kubernetes.io/docs/concepts/configuration/secret/

As a workaround, you can mount the license file as a container volume from the host to the
c:\inetpub\wwwroot\app_data\license.xml file inside the container. For more information and
a configuration example, see the Sitecore Container Development documentation.

1.3.7. Generating the Identity Server token signing certificate
Sitecore Identity Server requires a private key certificate to sign the tokens that are passed between
the server and the clients. You must generate this certificate, Base64 encode it in string form, and
store it as a Secret in the Kubernetes cluster.

The appendix Create the Identity Server token signing certificate contains a sample script that
generates a self-signed certificate and prepares the string for use as a Secret.

The sample script creates the certificate and copies the certificate password to the sitecore-
identitycertificatepassword.txt Kubernetes Secret text file.

You can mount the Identity Server certificate on the filesystem instead of passing it as an environment
variable. For more information about how to mount the token signing certificate as a volume, see the
Sitecore Docker Demo repository on GitHub.

1.3.8. Generating TLS/HTTPS certificates
To satisfy modern browser requirements and provide a secure environment by default, you must
generate certificates for TLS (Transport Layer Security) before you deploy the Sitecore containers. This
ensures secure communication between the browser and the Kubernetes ingress controller.

The default Kubernetes ingress controller used by Sitecore XP is the NGINX Ingress Controller. The
NGINX ingress controller is used to terminate TLS connections sent by the browser and proxy network
traffic to the individual XP containers inside the cluster. For more information, see the Kubernetes
documentation for ingress TLS configuration and NGINX TLS user guide.

The HTTPS protocol is required to support the secure browser cookies used by the Content
Management and Identity Server roles. HTTPS is enabled by default on the Content Delivery role
but you can disable it if it is not required for your specific use case.

The appendix Create the TLS/HTTPS certificates contains a sample script that generates the required
certificates.

Once the self-signed root authority certificate and per-host TLS/SSL certificates have been generated,
you must install the root authority certificate in the Trusted Root Certificate Authority store on all
clients. The sample script in the appendix Create the TLS/HTTPS certificates uses the mkcert tool to
automatically create the self-signed root authority certificate and install it in the correct certificate
store.

1.3.9. Use a custom hostname
You may want to use a custom hostname for the content delivery role or other Sitecore roles.

To enable a custom hostname:

1. Go to the k8s\<version>\<topology>\configmaps folder, for example,
k8s\ltsc2019\xp1\configmaps.

2. Open the <role>-hostname file, for example cd-hostname, in a text editor.

3. Replace the hostname in the file with your custom hostname. Save the file.

To secure communications between browsers and the Kubernetes Ingress Controller:

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 10

https://doc.sitecore.com/developers/103/developer-tools/en/run-your-first-sitecore-instance.html
https://github.com/Sitecore/docker-demo
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.nginx.com/products/nginx/kubernetes-ingress-controller/
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://kubernetes.github.io/ingress-nginx/user-guide/tls/

1. Generate the TLS/HTTPS certificates for your custom hostname.

2. Place the certicates in the k8s\<version>\<topology>\secrets\tls\global-<role>
folder, for example k8s\ltsc2019\xp1\secrets\tls\global-cd.

1.3.10. Using non-production container images for external services
In order to minimize the time it takes to deploy Sitecore Experience Platform (SXP) to Kubernetes
clusters for non-production use, Sitecore uses open source container images for the external
Microsoft SQL Server, Apache Solr, and RedisLabs Redis services.

You can find the yaml specification files for the external service containers in the SXP container
package, in the k8s\<version>\<topology>\external folder.

WARNING
These open source container images are for non-production use only. They are not
supported by Sitecore.

1.3.11. Hosting external data services
In production deployments, you must host the required Sitecore XP external services outside the
Kubernetes cluster.

The external hosted services for Microsoft SQL Server, Apache Solr (SolrCloud mode), and RedisLabs
Redis are required for production Kubernetes support from Sitecore.

You must deploy and configure the external services for production use before you deploy Sitecore XP
to Kubernetes.

To deploy the required database, search schemas, and the required data, the Sitecore container
deployment package includes Kubernetes data initialization jobs for Microsoft SQL Server and Apache
Solr (SolrCloud mode).

NOTE
RedisLabs Redis external services do not require initialization. The required cache
databases are created during first use.

You must complete the data initialization jobs before you deploy the Sitecore software containers.

For more information about data initialization, see the Deploy Data Initialization Jobs section in Deploy
Sitecore XP to the Azure Kubernetes Service.

Application database user credentials
Sitecore Kubernetes specification files are designed to deploy containers that use application
database users to connect to the databases. The MSSQL Data Initialization Job uses the credentials
provided in the Sitecore-database Secret to create an application database user for each database.

The application database user name Secrets have default values. You must provide passwords for all
of them.

For example, you specify the application database user credentials used to connect to the Sitecore
Master database in the sitecore-master-database-username.txt and sitecore-master-
database-password.txt Secrets files.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 11

NOTE
The content in secrets must be encoded in UTF-8 format.

For a complete list of application database user credentials Secrets, see the appendix The Kubernetes
Secrets list.

1.3.12. Using submit queue persistent storage
You can use the K8s persistent volume claim feature to make the Sitecore Submit Queue persistent
across multiple content delivery instances.

A persistent volume can refer to one of two things:

• The persistent volume, which stores all the sessions on the Windows node.

• The storage class, which deploys the Azure Storage Account to store all the sessions. This
approach is best practice for Azure Kubernetes Services.

1.3.13. Configuring the ingress controller service
You must have a Kubernetes ingress controller to deploy Sitecore Kubernetes specification files. The
ingress controller acts as a reverse proxy between the browser and the Sitecore software containers.

To support client IP address tracking and personalization, you must configure the ingress controller to
preserve the client source IP address in the X-Forwarded-For HTTP header.

To preserve the client source IP address, set the ingress controller externalTrafficPolicy setting
to Local. For more information, see the Kubernetes documentation and the NGINX Ingress Controller
Configuration documentation.

You must explicitly enable use of a proxy server in your Sitecore Configuration. For more information
about setting up a proxy server, see the Sitecore Experience Platform documentation.

To change this configuration for use in Kubernetes, We recommend that you build a new container
image that contains this configuration change for both the Content Management and Content
Delivery roles.

For more information about building new container images with configuration changes, see the
Sitecore Docker Examples repository on GitHub.

1.3.14. Using a private container registry
You can use a private container registry for authentication. To let a Kubernetes cluster authenticate
with a private container registry and pull images from it, you must create an image pull Secret.

The Kubernetes deployment specifications for every Sitecore role support the use of an image pull
Secret. The Secret name must be sitecore-docker-registry. For example:

imagePullSecrets:
- name: sitecore-docker-registry

You must change the registry path in the .yaml files for the images that are pulled from the private
registry.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 12

https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#preserving-the-client-source-ip
https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration
https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration
https://doc.sitecore.com/developers/103/sitecore-experience-manager/en/set-up-sitecore-ip-geolocation.html#UUID-228255d4-61ab-01c2-6c6b-cc14bc9f164a_N1542749891951
https://github.com/Sitecore/docker-examples
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

2. Deploy Sitecore XP to the Azure Kubernetes Service

This section describes the steps you need to perform to deploy Sitecore Experience Platform to the
Azure Kubernetes Service. You must perform the steps in the order they are described here.

2.1. Deploy external data services
In production deployments, you must deploy the required external services before you deploy the
Sitecore containers in Kubernetes.

The required external services are:

• Microsoft SQL Server or SQL Azure Database Elastic Pool

• Apache Solr (SolrCloud mode)

• RedisLabs Redis

In non-production deployments you can create the external services inside the K8s cluster. For more
information, see the section Deploy external services for a non-production deployment.

2.2. Create an AKS cluster
To create a new Azure Kubernetes Service (AKS) cluster with a Windows Server node pool, use the
Azure command-line interface (Azure CLI) or the Azure portal UI. The AKS cluster must contain one
Windows Server 2019 version 1809 or later node pool with one or more nodes.

For more information about using the Azure CLI to create an AKS cluster, see the Azure AKS
documentation.

2.3. Configure the Kubectl context cluster
To configure the Kubectl context cluster:

1. Log in to the Azure CLI and set a subscription. For example:

az login
az account set --subscription "Your Subscription"

2. Get the credentials for the K8s cluster that were created with the AKS cluster and save them
locally. For example:

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 13

https://docs.microsoft.com/en-us/azure/aks/windows-container-cli
https://docs.microsoft.com/en-us/azure/aks/windows-container-cli

az aks get-credentials --resource-group sc10aks --name sc10cluster

2.4. Deploy an ingress controller

To deploy an ingress controller:

1. Use the Windows AMD64 binaries to Install Helm. You can also use an alternative method as
described in Installing Helm Through Package Managers.

2. Add an NGINX ingress controller feed to Helm. For example:

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx

3. Use Helm to deploy the NGINX ingress controller. For example:

helm install nginx-ingress ingress-nginx/ingress-nginx --wait `
 --set controller.replicaCount=2 `
 --set controller.nodeSelector."kubernetes\.io/os"=linux `
 --set defaultBackend.nodeSelector."kubernetes\.io/os"=linux `
 --set controller.admissionWebhooks.patch.nodeSelector."kubernetes\.io/os"=linux `
 --set controller.service.externalTrafficPolicy=Local

NOTE
In ./ingress-nginx/ingress.yaml, the nginx.ingress.kubernets.io/proxy-body-
size annotation limits payload requests, such as media data upload or
Sitecore packages installation, to 512 MB. You can adjust this to fit your
installation. For more information about ingress configuration, see NGINX
Ingress Controller Configuration. If you need more than 512 MB, you must
also adjust the maxRequestLength setting in the httpRuntime node in the
Sitecore web.config file.

4. From the root folder of your chosen topology, run this command:

kubectl apply -k ./ingress-nginx/

2.5. Add grant a 'Contributor' access to your resource group for
the Managed Identity

During the deploying Sitecore to the k8s you can face with the issue “failed mount volume“ for “cd,
cm“ pods:

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 14

https://helm.sh/docs/intro/install/
https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration
https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration

Warning: FailedMount 18m (x9 over 28m) kubelet MountVolume.MountDevice failed
for volume "pvc-XXXX".The client '{client_id}' with object id '{object_id}' does
not have authorization to perform action 'Microsoft.Storage/storageAccounts/listKeys/
action' over scope '/subscriptions/{subscription_id}/resourceGroups/{resource_group_name}/
providers/Microsoft.Storage/storageAccounts/{storage_account_id}' or the scope is invalid. If
access was recently granted, please refresh your credentials.

To solve this issue, you need to grant a “Contributor“ access to your resource group for the Managed
Identity:

1. Get the object id (assignee) using the Managed Identity of the Kubernetes cluster node pool in
the resource group scope
$assignee = az aks show -g [resource_group_name] -n [cluster_name] --
query identityProfile.kubeletidentity.objectId | ConvertFrom-Json

2. Get the node resource group name using the Managed Identity of the Kubernetes cluster node
pool in the resource group scope
$nodeResourceGroupName = az aks show -g [resource_group_name] -n
[cluster_name] --query nodeResourceGroup | ConvertFrom-Json

3. Assign the 'Contributor' role to Kubernetes cluster node pool in the node resource group name
for the resource group scope
az role assignment create --assignee-object-id
[assignee] --assignee-principal-type “ServicePrincipal“ --role
"Contributor" --scope "/subscriptions/[subscription_id]/resourceGroups/
[node_resource_group_name]"
Where:

• [resource_group_name] is your resource group name

• [cluster_name] is your cluster name

• [assignee] is your object id for the Managed Identity

• [subscription_id] is your subscription id

• [node_resource_group_name] is your node resource group name

2.6. Deploy the secrets

To deploy the secrets:

1. Ensure that all the secrets files (.txt, .crt, .key) files in the /secrets and
overrides\<topology>\secrets folders are updated according to the requirements listed
in The Kubernetes Secrets list.

2. From the folder of your chosen topology, run this command:

kubectl apply -k ./secrets/

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 15

2.7. Deploy external services for a non-production deployment
In production environments you must deploy external services outside the Kubernetes cluster.
However, in non-production environments you can deploy the services inside the Kubernetes cluster.

To deploy external services for a non-production deployment:

1. From the folder of your chosen topology, run this command:

kubectl apply -k ./external/

2. To check the status of the pods, run this command:

kubectl get pods -o wide

3. To wait until the status of all the pods is Running/OK, run this command:

kubectl wait --for=condition=Available deployments --all --timeout=900s
kubectl wait --for=condition=Ready pods --all

2.8. Deploy the data initialization jobs
To deploy the data initialization jobs:

1. If you use SearchStax as your SolrCloud provider, follow the instructions in Initialize data for
SearchStax provider for Solr. If you do not use Searchstax, navigate to the folder of your
chosen topology, and run this command:

kubectl apply -k ./init/

2. To check the status of the jobs, run this command:

kubectl get jobs -o wide

3. To wait until the status of all the jobs is Complete/OK, run this command:

kubectl wait --for=condition=Complete job.batch/solr-init --timeout=900s
kubectl wait --for=condition=Complete job.batch/mssql-init --timeout=900s

2.9. Deploy a persistent volume claim
To deploy a persistent volume claim, run this command:

kubectl apply -f ./volumes/azurefile

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 16

2.10. Deploy the Sitecore pods

To deploy the Sitecore pods:

1. From the folder of your chosen topology, run this command:

kubectl apply -k ./

2. To check the status of the pods, run this command:

kubectl get pods -o wide

3. To wait until the status of all the pods is Running/OK, run this command:

kubectl wait --for=condition=Available deployments --all --timeout=1800s

2.11. Update the local host file

To update the local host file:

1. To obtain the external IP address of the ingress controller service for the CM role, run this
command:

kubectl get ingress

2. Update the local host file with the external IP address and the hostnames that are required by
the ingress controller. The default hostnames are:

• cm.globalhost

• cd.globalhost

• Id.globalhost

2.12. Configure the SolrCloud search indexes

When you have finished deploying the containers, you must update all the search indexes.

To configure the SolrCloud search indexes:

1. Open a browser and navigate to https://cm.globalhost/sitecore.

2. Log in to Sitecore with the admin user and password that you configured as a secret.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 17

https://cm.globalhost/sitecore

3. In the Sitecore Control Panel click Populate Managed Schema. In the Schema Populate
dialog box, select all the indexes and click Populate.

4. In the Sitecore Control Panel, in the Indexing section, click Indexing Manager.

5. In the Indexing Manager dialog box, select the indexes you want to rebuild, and then click
Rebuild.

6. When the search indexes have been rebuilt, click Close.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 18

3. Deploy custom modules

For Sitecore components, by default, you deploy only the Solr collections and dacpacs included in the
platform. In Sitecore 10.1 and later versions you can also deploy custom modules.

If the module you want to deploy requires database updates and/or custom Solr collections, you
might need to build a new layer on top of the mssql-init and/or solr-init images. You must use
the module assets image as a source for the module dacpacs and Solr collections configuration files.

3.1. Add database updates to a module

To add the module database updates:

1. Build a new layer on top of the mssql-init image.

2. Copy the module dacpacs from the module asset image into the
c:\resources\module_name_data folder.

3. Create a Kubernetes specification file for your custom mssql-init image and add the
module name to the DATABASES_TO_DEPLOY variable:

• Name - DATABASES_TO_DEPLOY

• Value - module_name

NOTE
The value of the DATABASES_TO_DEPLOY environment variable will instruct the
custom mssql-init job to deploy only the dacpac files of the corresponding
module.

4. Add your custom mssql-init job to the init/kustomization.yaml file.

3.2. Add Solr collections to a module

To add a Solr collections module:

1. Build a new layer on top of the solr-init image.

2. Add the Solr collections module configuration files from the module assets image to the
c:\data folder.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 19

NOTE
You must use the JSON file format for collections. If the module name is sxa,
you can, for example, name the Solr collections file cores-sxa.json.

3. In the Kubernetes specification for the solr-init image, add the custom module to the
SOLR_COLLECTIONS_TO_DEPLOY variable.

NOTE
If you add more than one module to one of the variables,
you must separate the module names with commas. For example,
SOLR_COLLECTIONS_TO_DEPLOY="sxa,jss".

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 20

4. Appendices

The appendices contain various helper functions and background information.

4.1. Encode and compress the Sitecore license file

You must compress the Sitecore license file and encode it to Base64. This procedure processes the
license file and stores the encoded license key in the .\secrets\sitecore-license.txt file.

To compress and encode the license file:

1. Create a PowerShell command file, and enter the following function in it:

function ConvertTo-CompressedBase64String {
 [CmdletBinding()]
 Param (
 [Parameter(Mandatory)]
 [ValidateScript({
 if (-Not ($_ | Test-Path)) {
 throw "The file or folder $_ does not exist"
 }
 if (-Not ($_ | Test-Path -PathType Leaf)) {
 throw "The Path argument must be a file. Folder paths are not allowed."
 }
 return $true
 })]
 [string] $Path
)
 $fileBytes = [System.IO.File]::ReadAllBytes($Path)
 [System.IO.MemoryStream] $memoryStream = New-Object System.IO.MemoryStream
 $gzipStream = New-Object System.IO.Compression.GzipStream $memoryStream, ([IO.Compression.CompressionMode]::Compress)
 $gzipStream.Write($fileBytes, 0, $fileBytes.Length)
 $gzipStream.Close()
 $memoryStream.Close()
 $compressedFileBytes = $memoryStream.ToArray()
 $encodedCompressedFileData = [Convert]::ToBase64String($compressedFileBytes)
 $gzipStream.Dispose()
 $memoryStream.Dispose()
 return $encodedCompressedFileData
}

2. Run the PowerShell command file, specifying the path to the license file in the Path
parameter. For example:

ConvertTo-CompressedBase64String -Path .\license.xml | Out-File -Encoding ascii -NoNewline
-Confirm -FilePath .\secrets\sitecore-license.txt

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 21

4.2. Create the Identity Server token signing certificate

Use the following PowerShell script to create the Identity Server token signing certificate:

$certificatePassword = "Test123!"

$newCert = New-SelfSignedCertificate -DnsName "localhost" -FriendlyName "Sitecore Identity Token
Signing" -NotAfter (Get-Date).AddYears(5)

Export-PfxCertificate -Cert $newCert -FilePath .\SitecoreIdentityTokenSigning.pfx -Password
(ConvertTo-SecureString -String $certificatePassword -Force -AsPlainText)

[System.Convert]::ToBase64String([System.IO.File]::ReadAllBytes((Get-
Item .\SitecoreIdentityTokenSigning.pfx))) | Out-File -Encoding
ascii -NoNewline -Confirm -FilePath .\secrets\sitecore-identitycertificate.txt

4.3. Create the TLS/HTTPS certificates

To generate the TLS/SSL certificates that are required by the NGINX ingress controller:

1. Open a Windows Command Prompt with Administrator rights.

2. Navigate to the folder containing Kubernetes specification files for the topology you are using.

3. Run the following commands one by one:

IF NOT EXIST mkcert.exe powershell Invoke-WebRequest https://github.com/FiloSottile/
mkcert/releases/download/v1.4.1/mkcert-v1.4.1-windows-amd64.exe -UseBasicParsing -OutFile
mkcert.exe

mkcert -install

del /Q /S *.crt

del /Q /S *.key

mkcert -cert-file secrets\tls\global-cm\tls.crt -key-file secrets\tls\global-cm\tls.key
"cm.globalhost"

mkcert -cert-file secrets\tls\global-cd\tls.crt -key-file secrets\tls\global-cd\tls.key
"cd.globalhost"

mkcert -cert-file secrets\tls\global-id\tls.crt -key-file secrets\tls\global-id\tls.key
"id.globalhost"

NOTE
The first time the mkcert utility runs, it might prompt you to install the
generated self-signed root certificate authority.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 22

4.4. Initialize data for SearchStax provider for Solr

If you use SearchStax as your SolrCloud provider, to initialize your data:

1. In the .\overlays\init\SearchStax folder, locate the following files and fill in the
SearchStax specific secrets:

Filename Description of secret Topology

sitecore-searchstax-account-name.txt SearchStax account name XM1, XP1

sitecore-searchstax-apikey.txt SearchStax API key XM1, XP1

sitecore-searchstax-deployment-uid.txt SearchStax deployment UID XM1, XP1

2. Run the following command:

kubectl apply -k .\overlays\init\SearchStax

4.5. The Kubernetes Secrets list

The following table describes the Kubernetes Secrets files.

NOTE
The content in secrets must be encoded in UTF-8 format.

Name Description Topology Default value

sitecore-license.txt License file content converted to
GZIP Compressed and Base64
encoded string

(See Encode and compress the
Sitecore license file)

XM1, XP1

sitecore-adminpassword.txt Sitecore application administrator
password

XM1, XP1

sitecore-
telerikencryptionkey.txt

Symmetric key used by the Telerik
web controls

Length: 64-128 characters

XM1, XP1

sitecore-
identitycertificate.txt

Identity Server certificate used to
encrypt data

(See Create the Identity Server
token signing certificate)

XM1, XP1

sitecore-
identitycertificatepassword.txt

Password to open the Identity
Server certificate

XM1, XP1

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 23

Name Description Topology Default value

sitecore-identitysecret.txt Shared secret between the Identity
Server and client roles

Length: 64 characters

XM1, XP1

sitecore-reportingapikey.txt Length: 64-128 characters XP1

sitecore-solr-connection-
string.txt

Connection string to Solr XM1, XP1 http://solr:8983/solr;solrCloud=true

sitecore-solr-connection-
string-xdb.txt

Connection string to Solr-xdb XP1 http://solr:8983/solr/
sitecore_xdb;solrCloud=true

sitecore-solr-prefix-name.txt A common prefix for Solr core
names.

If you use the XP1 topology and
change this value, you must update
the solr xdb connection string in
the sitecore-solr-connection-
string-xdb.txt file with the
same prefix.

XM1, XP1 sitecore

sitecore-databaseusername.txt SQL Server administrator name XM1, XP1 sa

sitecore-databaseservername.txt Server name for connect to MS SQL
Server

XM1, XP1 mssql

sitecore-databasepassword.txt Password for connect to MS SQL
Server

XM1, XP1

sitecore-databaseprefix.txt The prefix for Sitecore MS SQL
databases. If you use an existing MS
SQL deployment, you must change
this to your existing MS SQL prefix.

XM1, XP1

sitecore-custom-database-
prefix-update-from.txt

Your current prefix for custom
databases. If you update this
value, the custom database prefix
stated here will be replaced
with the value in the sitecore-
databaseprefix.txt file.

XM1, XP1

sitecore-database-elastic-pool-
name.txt

Database elastic pool name.

Use the name of an elastic pool
resource with access to the SQL
Server

XM1, XP1

sitecore-core-database-
username.txt

UserName for database name
*_Core in MS SQL Server

XM1, XP1 coreuser

sitecore-core-database-
password.txt

Password for database name
*_Core in MS SQL Server

XM1, XP1

sitecore-master-database-
username.txt

UserName for database name
*_Master in MS SQL Server

XM1, XP1 masteruser

sitecore-master-database-
password.txt

Password for database name
*_Master in MS SQL Server

XM1, XP1

sitecore-web-database-
username.txt

UserName for database name
*_Web in MS SQL Server

XM1, XP1 webuser

sitecore-web-database-
password.txt

Password for database name
*_Web in MS SQL Server

XM1, XP1

sitecore-forms-database-
username.txt

UserName for database name
*_ExperienceForms in MS SQL
Server

XM1, XP1 formsuser

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 24

Name Description Topology Default value

sitecore-forms-database-
password.txt

Password for database name
*_ExperienceForms in MS SQL
Server

XM1, XP1

sitecore-exm-master-database-
username.txt

UserName for database name
*_EXM.Master in MS SQL Server

XP1 exmmasteruser

sitecore-exm-master-database-
password.txt

Password for database name
*_EXM.Master in MS SQL Server

XP1

sitecore-messaging-database-
username.txt

UserName for database name
*_Messaging in MS SQL Server

XP1 messaginguser

sitecore-messaging-database-
password.txt

Password for database name
*_Messaging in MS SQL Server

XP1

sitecore-marketing-automation-
database-username.txt

UserName for database name
*_MarketingAutomation in MS SQL
Server

XP1 mauser

sitecore-marketing-automation-
database-password.txt

Password for database name
*_MarketingAutomation in MS SQL
Server

XP1

sitecore-processing-engine-
storage-database-username.txt

UserName for database name
*_ProcessingEngineStorage in MS
SQL Server

XP1 processingenginestorageuser

sitecore-processing-engine-
storage-database-password.txt

Password for database name
*_ProcessingEngineStorage in MS
SQL Server

XP1

sitecore-processing-engine-
tasks-database-username.txt

UserName for database name
*_ProcessingEngineTasks in MS SQL
Server

XP1 processingenginetasksuser

sitecore-processing-engine-
tasks-database-password.txt

Password for database name
*_ProcessingEngineTasks in MS SQL
Server

XP1

sitecore-processing-pools-
database-username.txt

UserName for database name
*_Processing.Pools in MS SQL
Server

XP1 processingpoolsuser

sitecore-processing-pools-
database-password.txt

Password for database name
*_Processing.Pools in MS SQL
Server

XP1

sitecore-processing-tasks-
database-username.txt

UserName for database name
*_Processing.Tasks in MS SQL
Server

XP1 processingtasksuser

sitecore-processing-tasks-
database-password.txt

Password for database name
*_Processing.Tasks in MS SQL
Server

XP1

sitecore-reference-data-
database-username.txt

UserName for database name
*_ReferenceData in MS SQL Server

XP1 refdatauser

sitecore-reference-data-
database-password.txt

Password for database name
*_ReferenceData in MS SQL Server

XP1

sitecore-reporting-database-
username.txt

UserName for database name
*_Reporting in MS SQL Server

XP1 reportinguser

sitecore-reporting-database-
password.txt

Password for database name
*_Reporting in MS SQL Server

XP1

sitecore-collection-
shardmapmanager-database-
username.txt

UserName for database name
*_Xdb.Collection.ShardMapManager
in MS SQL Server

XP1 shardmapmanageruser

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 25

Name Description Topology Default value

sitecore-collection-
shardmapmanager-database-
password.txt

Password for database name
*_Xdb.Collection.ShardMapManager
in MS SQL Server

XP1

sitecore-media-request-
protection-shared-secret.txt

The Sitecore secret used to protect
media requests.

IMPORTANT
You must
change the
shared secret to
a random string.
Do not use the
default value.

XM1, XP1 HQ(NjM(u6_5koVla-
cTf4ta8x1h6Sb+ZcUQrULUz-0Afpx0cx-
NuMtIoQkpDFmX5

sitecore-graphql-
uploadmedia_encryptionkey.txt

The encryption key used for media
upload in GraphQL.

IMPORTANT
You must
change the key
to a random
string. Do not
use the default
value.

XM1, XP1 432A462D4A614E64

sitecore-log-level-value.txt Select which messages Sitecore
writes to the log. You can choose
between different levels of severity.

XM1, XP1 INFO

4.6. Solr-init image variables

Before you deploy the Solr-init image you can set parameters in the \k8s-sitecore-
xm1\init\solr-init.yaml file to control, for example, how many replicas and shards the
deployment creates.

This table shows some of the parameters you can use.

Name Default Description

SOLR_SITECORE_CONFIGSET_SUFFIX_NAME _config Solr config set suffix. Defines the name of the
configurations to use for this collection. If not
provided, Solr defaults to the collection name as
the configuration name.

SOLR_REPLICATION_FACTOR 1 The number of replicas created for each shard.

SOLR_NUMBER_OF_SHARDS 1 The number of shards to be created as part of
the collection.

This is a required parameter if you use the
compositeId router.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 26

https://sitecore-community.github.io/docs/documentation/Sitecore%20Fundamentals/Logging/

Name Default Description

SOLR_MAX_SHARDS_NUMBER_PER_NODES 1 When you create a collection, Solr spreads the
shards and/or replicas across all available live
nodes. If a node is not live when the CREATE
operation is called, it does not get any parts
of the new collection, which might lead to too
many replicas being created on a single live
node. Setting this variable sets a limit on the
number of replicas CREATE spreads to each
node. If Solr cannot fit the entire collection into
the live nodes, no collection is created at all.

A node never contains two replicas of the same
shard.

SOLR_CORE_PREFIX_NAME sitecore Core prefix

SOLR_COLLECTIONS_TO_DEPLOY <empty> List names of the collections to deploy to Solr
separated by a comma (,).

For a description of all the parameters you can use, see the Solr Reference Guide 6.6 and Solr
Reference Guide 7.7.

4.7. Common issues

This section contains solutions to issues you might encounter.

4.7.1. I cannot upload a Translations file to the website root folder
If the Upload Files dialog hangs during the upload operation, the following errors are written to the
log file:

ERROR Could not save posted file: ja-JP.xml
Exception: System.UnauthorizedAccessException
Message: Access to the path 'C:\inetpub\wwwroot\ja-JP.xml' is denied.

This happens because the Import language dialog uploads translation files to the website root
folder by default, and for security reasons write access is denied for this folder.

To solve this issue, upload the translation files to the upload folder, where write access is enabled.

To upload a translations file:

1. In the Open Language File dialog, select the upload folder and click Upload.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 27

https://solr.apache.org/guide/6_6/collections-api.html#CollectionsAPI-create
https://solr.apache.org/guide/7_7/collections-api.html
https://solr.apache.org/guide/7_7/collections-api.html

2. In the Upload Files dialog, you can now upload the translations file to the upload folder.

3. Use the Import language dialog to import the translation file from the upload folder.

NOTE
The translation .xml file is saved to the Media library. You can delete it after you have
imported the translation.

4.7.2. Only the main Sitecore log is exposed for Sitecore roles containers
Sitecore uses the LogMonitor tool to collect and output log files for containers. By default, the tool is
configured to monitor the following log files:

• System event log – Error level entries.

• IIS logs

• Primary Sitecore log (log.*.txt files) – for Sitecore roles

• xConnect log (xconnect-log-*.txt files) – for xConnect roles

Auxiliary Sitecore logs, such as for search, crawling, or publishing, are not monitored on Sitecore
containers.

To reconfigure the LogMonitor tool to include logs for other roles:

1. Create a Dockerfile with the corresponding role image.

2. In the C:\LogMonitor\LogMonitorConfig.json file, change the filter for the source from
the c:\\inetpub\\wwwroot\\App_data\\logs directory. For example:

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 28

{
 "LogConfig": {
 "sources": [
 ...
 {
 "type": "File",
 "directory": "c:\\inetpub\\wwwroot\\App_data\\logs",
 "filter": ".*log*.txt",
 "includeSubdirectories": false
 }
]
 }
}

3. Use the Dockerfile to build a new Docker image for the role.

NOTE
You can also view all the Sitecore log files directly from a container’s file system by
connecting to the container from a PowerShell or command prompt terminal.

4.7.3. When I request SSC, problems occur if there are underscores in header
names
For example, the following GET request results in a bad request error:

• url: https://cm.globalhost/sitecore/api/ssc/aggregate/content/Items

• add the header:

• key: sc_apikey

• value: id of the created item

This occurs because Nginx does not allow underscores in header names.

You can solve this problem in two ways:

• Add sc_apikey as a parameter to every request. For example:

https://cm.globalhost/sitecore/api/ssc/aggregate/content/Items?sc_apikey=336A2458-1E02-412E-
AA1B-E84E002264FC

• Allow underscores in header names by introducing a ConfigMap for the ingress configuration.
For more information, see the Kubernetes ConfigMap documentation.

4.7.4. When I reference a CM service from my container, the connection fails
Use a fully qualified domain name instead of a service name. For example, if the CM service is in the
default namespace, and the domain name for your cluster is cluster.local, use the service's DNS
name cm.default.svc.cluster.local.

Sitecore XP 10.3.1 Production Deployment With Kubernetes

© Copyright 2023, Sitecore® - all rights reserved. 29

https://cm.globalhost/sitecore/api/ssc/aggregate/content/Items
http://nginx.org/en/docs/http/ngx_http_core_module.html#underscores_in_headers
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#enable-underscores-in-headers

	Sitecore XP 10.3.1 Production Deployment With Kubernetes
	Table of Contents
	1. Introduction to Azure Kubernetes Service
	1.1. Supported Sitecore topologies for Kubernetes
	1.1.1. XM Server (XM Scaled)
	1.1.2. XP Server (XP Scaled)

	1.2. Requirements for Sitecore on Azure Kubernetes Service
	1.2.1. Sitecore Container Deployment Package
	1.2.2. Client software requirements
	1.2.3. Kubernetes Cluster software requirements
	1.2.4. Kubernetes Cluster hardware requirements
	1.2.5. Required external data services
	1.2.6. Azure Kubernetes Service requirements
	1.2.7. Ingress Controller requirements

	1.3. Prepare for deploying to Azure Kubernetes Service
	1.3.1. Understanding Sitecore Kubernetes specification files
	1.3.2. Accessing the Sitecore container registry
	1.3.3. Prepare the Kubernetes specification files for deployment
	1.3.4. Change the database prefix
	1.3.5. Deploying the Kubernetes Secrets
	1.3.6. Compressing the Sitecore license file
	1.3.7. Generating the Identity Server token signing certificate
	1.3.8. Generating TLS/HTTPS certificates
	1.3.9. Use a custom hostname
	1.3.10. Using non-production container images for external services
	1.3.11. Hosting external data services
	Application database user credentials

	1.3.12. Using submit queue persistent storage
	1.3.13. Configuring the ingress controller service
	1.3.14. Using a private container registry

	2. Deploy Sitecore XP to the Azure Kubernetes Service
	2.1. Deploy external data services
	2.2. Create an AKS cluster
	2.3. Configure the Kubectl context cluster
	2.4. Deploy an ingress controller
	2.5. Add grant a 'Contributor' access to your resource group for the Managed Identity
	2.6. Deploy the secrets
	2.7. Deploy external services for a non-production deployment
	2.8. Deploy the data initialization jobs
	2.9. Deploy a persistent volume claim
	2.10. Deploy the Sitecore pods
	2.11. Update the local host file
	2.12. Configure the SolrCloud search indexes

	3. Deploy custom modules
	3.1. Add database updates to a module
	3.2. Add Solr collections to a module

	4. Appendices
	4.1. Encode and compress the Sitecore license file
	4.2. Create the Identity Server token signing certificate
	4.3. Create the TLS/HTTPS certificates
	4.4. Initialize data for SearchStax provider for Solr
	4.5. The Kubernetes Secrets list
	4.6. Solr-init image variables
	4.7. Common issues
	4.7.1. I cannot upload a Translations file to the website root folder
	4.7.2. Only the main Sitecore log is exposed for Sitecore roles containers
	4.7.3. When I request SSC, problems occur if there are underscores in header names
	4.7.4. When I reference a CM service from my container, the connection fails

