
Sitecore XP 10.1.3 Developer
Workstation Deployment With
Docker
How to install a Sitecore Experience Platform 10.1.3 on a developer workstation
using containers with Docker

August 7, 2023

Table of Contents
1. Introduction to Docker Compose ... 3

1.1. Supported Sitecore topologies for Docker ... 3
1.1.1. XP Workstation (XP Single) .. 3
1.1.2. XM Server (XM Scaled) .. 4
1.1.3. XP Server (XP Scaled) .. 4

1.2. Sitecore Docker Compose requirements ... 5
1.2.1. Software requirements ... 5
1.2.2. Hardware requirements ... 6
1.2.3. Network requirements ... 6

1.3. Prepare for deploying ... 6
1.3.1. Understanding environment variables .. 6
1.3.2. Compressing the Sitecore license file .. 7
1.3.3. Set up the Identity Server token signing certificate ... 7
1.3.4. Generating TLS/HTTPS certificates .. 8
1.3.5. Update the Windows host names ... 8
1.3.6. Using non-production container images ... 9

2. Deploy a workstation ... 10
2.1. Rebuild the search indexes ... 11
2.2. Deploy custom modules .. 11

2.2.1. Add database updates to a module .. 11
2.2.2. Add Solr collections to a module ... 11

2.3. Removing the Docker environment ... 12
3. Appendices .. 13

3.1. Encode and compress the Sitecore license file ... 13
3.2. Create the Identity Server token signing certificate .. 14
3.3. Generate TLS/SSL certificates for reverse proxy ... 14
3.4. Environment variable list ... 15
3.5. Common issues .. 16

3.5.1. I cannot upload a Translations file to the website root folder 16
3.5.2. I can only see the main Sitecore log files for the Sitecore roles containers 17

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 2

1. Introduction to Docker Compose

Sitecore Experience Platform uses Docker Compose as the container orchestrator on developer
workstations. Docker Compose is a simple container deployment tool that is bundled with Docker
for Windows. You can use other tools to deploy Sitecore container images but we recommend that
you use Docker Compose to deploy the containers that form the Sitecore Experience Platform.

1.1. Supported Sitecore topologies for Docker
You can install Sitecore XP on developer workstations using Docker containers.

Sitecore XP for Docker supports the following topologies:

• XP Workstation (XP Single)

• XM Server (XM Scaled)

• XP Server (XP Scaled)

All three topologies are included in the Sitecore Container Deployment package you can download
from the Sitecore download page.

1.1.1. XP Workstation (XP Single)
The Sitecore Experience Platform Workstation for Docker topology, also known as XP0, is for
developer workstation environments only. This topology is designed to reduce memory overhead,
reduce download size, improve startup/shutdown time, and reduce complexity.

The XP0 topology supports the following Sitecore roles:

Role type Sitecore role

Production Sitecore Identity Server

Non-production Content Management (Standalone)

xConnect Server (Standalone)

xConnect Search Indexer

xDB Automation Engine

Cortex Processing Engine

Microsoft SQL Server

Apache Solr

RedisLabs Redis Server

Traefik Reverse Proxy

For a list of the supported environment variables, in the Container Deployment Package, in the
Docker Compose folder for the XP0 topology, see the environment variable configuration file.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 3

https://dev.sitecore.net/Downloads/Sitecore_Experience_Platform.aspx

1.1.2. XM Server (XM Scaled)
The Sitecore Experience Manager Server for Docker topology, also known as XM1, is suitable for use in
both production and non-production environments.

NOTE
To reduce deployment time and lower the resource overhead in non-production
environments, you can remove the Content Delivery role from the Docker Compose
configuration.

The XM1 topology supports the following Sitecore roles:

Role type Sitecore role

Production Content Management

Content Delivery

Sitecore Identity Server

Non-production Microsoft SQL Server

Apache Solr

RedisLabs Redis Server

Traefik Reverse Proxy

For a list of the supported environment variables, in the Container Deployment Package, in the
Docker Compose folder for the XM1 topology, see the environment variable configuration file.

1.1.3. XP Server (XP Scaled)
The Sitecore Experience Platform Server for Docker topology, also known as XP1, is suitable for use in
both production and non-production environments.

The resources required to run the XP1 topology in a non-production environment can be significant
but are required to mimic the exact configuration that is used in production environments. In
non-production environments, it is best practice to use a workstation that meets the minimum
workstation hardware requirements.

The XP1 topology supports the following Sitecore roles:

Role type Sitecore role

Production Content Management

Content Delivery

Sitecore Identity Server

xDB Processing

xConnect Collection

xConnect Search

xDB Automation Operations

xDB Automation Reporting

xDB Reference Data

Cortex Processing

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 4

Role type Sitecore role

Cortex Reporting

xConnect Search Indexer

xDB Automation Engine

Cortex Processing Engine

Non-production Microsoft SQL Server

Apache Solr

RedisLabs Redis Server

Traefik Reverse Proxy

For a list of the supported environment variables, in the Container Deployment Package, in the
Docker Compose folder for the XP1 topology, see the environment variable configuration file.

1.2. Sitecore Docker Compose requirements
There are a number of requirements that your environment must fulfill before you can deploy
containers with Sitecore Docker compose.

1.2.1. Software requirements
You must have the following software installed in order to install Sitecore Experience Platform on
Docker:

• One of the following operating systems:

• Windows 10 1809 or later

• Windows Server 1809 or later

NOTE
Containers support Docker Compose V2 by activating the Use Docker Compose
V2 setting in the Docker Desktop. This means that Docker CLI supports
commands like docker-compose or docker compose.

Using Docker Compose V2 requires Docker Desktop version 4.12.0 or later.

For more information about Windows and containers, see Microsoft's
documentation.

• Docker Desktop for Windows

In addition, you must download the Sitecore Container Deployment Package from the Sitecore
download page.

The package includes, among other things, two configuration files that are required by Sitecore
Docker Compose:

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 5

https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://docs.docker.com/docker-for-windows/install/
https://dev.sitecore.net/Downloads/Sitecore_Experience_Platform.aspx
https://dev.sitecore.net/Downloads/Sitecore_Experience_Platform.aspx

• docker-compose.yml
A Docker Compose configuration file that contains information about the different containers
and configuration of each Sitecore role.
Studying this file can help you understand how the containers and the connection strings
between the different roles function.

• .env
An environment variable configuration file that contains the configuration information for the
environment you want to deploy. You can edit this file outside the main Docker Compose
configuration.

1.2.2. Hardware requirements
The recommended minimum requirements for your workstation in order for it to run Sitecore
Experience Platform on Docker are:

• RAM
For the XP1 server topology, we recommend a developer workstation with 32GB of RAM.
For the XM1 and XP0 server topologies, we recommend a developer workstation with a minimum
of 16GB of RAM.

• CPU
We recommend a quad-core processor or higher.

• Disk
The Sitecore container images require approximately 25 GB free space. It is best practice to use
SSD disks for optimal performance when downloading and running Docker containers. The type
of disks used for SQL Server and Solr can also have a significant impact on performance.

1.2.3. Network requirements
Before you deploy the Sitecore containers you must ensure that the following required TCP ports are
available:

Required port Role Description

443 Traefik HTTPS proxy

8079 Traefik Traefik dashboard

8984 Solr Solr API and dashboard

14330 SQL SQL Server

1.3. Prepare for deploying

Before you start the process of deploying the Sitecore XP containers, there are some concepts and
procedures you need to be familiar with.

1.3.1. Understanding environment variables
Environment variables are the preferred mechanism for passing configuration settings into Sitecore
containers.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 6

The environment variable configuration file .env contains all the environment variables. Docker
Compose loads these automatically during startup. The .env file for the Sitecore deployment is
included in the Sitecore Container Deployment package.

IMPORTANT
Each environment variable must fit inside a 30,000 character block in the .env file.
If the size of the variable exceeds 30,000 characters, the system will not deploy
successfully.

If you want to reuse environment variables across multiple environments, you must set the
environment variables in the Windows OS and remove the corresponding keys from the environment
variable configuration file that is used by Docker Compose.

1.3.2. Compressing the Sitecore license file
Sitecore license files are typically passed to container instances as an environment variable in string
form. However, the Sitecore license file is very large and you must therefore compress and Base64
encode it to conform with the maximum size allowed by Windows for all the environment variables.

The appendix Encode and compress the Sitecore license file contains a sample PowerShell script you
can use to convert a license file into a Base64 compressed string for use in an environment variable.

When you have compressed and encoded the license file, copy the string value to the
SITECORE_LICENSE variable in the environment variable configuration file or set it as a Windows
system environment variable.

Some Sitecore license files are so large that they are incompatible with containers even after
compression. This usually happens when the license file contains additional embedded HTML.

As a workaround, you can mount the license file as a Docker volume from the host to the
c:\inetpub\wwwroot\app_data\license.xml file inside the container. For more information and
a configuration example, see the Sitecore Container Development documentation.

1.3.3. Set up the Identity Server token signing certificate
Sitecore Identity Server requires a private key certificate to sign the tokens that are passed between
the server and the clients. You must generate this certificate, Base64 encode it in string form, and pass
it to the container as an environment variable.

To set up the certificate:

1. Use the sample script in Create the Identity Server token signing certificate to generate
a self-signed certificate. The script Base64 encodes the certificate and creates the
SitecoreIdentityTokenSigning.txt file containing the certificate.

NOTE
The script asks you to supply a certificate password. Make sure you write the
password you choose down, as you need it to configure the certificate.

2. In the .env file, update the SITECORE_ID_CERTIFICATE variable with the certificate from the
SitecoreIdentityTokenSigning.txt file.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 7

https://devblogs.microsoft.com/oldnewthing/20100203-00/?p=15083
https://devblogs.microsoft.com/oldnewthing/20100203-00/?p=15083
https://doc.sitecore.com/developers/101/developer-tools/en/run-your-first-sitecore-instance.html

3. In the .env file, update the SITECORE_ID_CERTIFICATE_PASSWORD variable with the
password that you supplied when you generated the certificate.

4. Save the .env file.

NOTE
Instead of passing the Sitecore Identity Server certificate as an environment variable,
you can mount it on the file system. For more information and a configuration
example, see the Sitecore Container Development documentation.

1.3.4. Generating TLS/HTTPS certificates
To satisfy modern browser requirements and provide a secure environment by default, you must
generate certificates for TLS (Transport Layer Security) before you deploy the Sitecore containers. This
ensures secure communication between the browser and the HTTPS reverse proxy container.

The default reverse proxy or edge router used by the Sitecore Experience Platform in Docker
Compose is Traefik. The Traefik edge router is used as a reverse proxy to the individual XP containers
and terminates the TLS connections sent by the browser. For more information, see the Traefik
documentation about TLS configuration.

You can view the reverse proxy configuration in the Traefik dashboard. When you have completed the
deployment, you can see the dashboards at http://localhost:8079.

All internal communication between the Traefik edge router and the individual XP containers is sent
unencrypted with the HTTP protocol.

You must use the HTTPS protocol between the reverse proxy and client browsers to support the
secure browser cookies used by the Sitecore Content Management, Sitecore Content Delivery, and
Identity Server roles.

The appendix Generate TLS/SSL certificates for reverse proxy contains a sample script that generates
the required certificates. When you have generated the self-signed root authority certificate and per-
host TLS/SSL certificates, you must install the root authority certificate in the Trusted Root Certificate
Authority store on all the clients.

1.3.5. Update the Windows host names
To access the Sitecore application from a browser, you must add the host names that are used by
the reverse proxy container to the Windows hosts file. The default host names vary depending on the
topology you decide to deploy.

NOTE
All the host names must point to the loopback IP address 127.0.0.1.

The following table lists the default hostnames for each topology:

Topology Hostname

XM Server (XM1) xm1cm.localhost

xm1cd.localhost

xm1id.localhost

XP Workstation (XP0) xp0cm.localhost

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 8

https://doc.sitecore.com/en/developers/101/developer-tools/containers-in-sitecore-development.html
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://docs.traefik.io/
https://docs.traefik.io/https/tls/
https://docs.traefik.io/https/tls/
http://localhost:8079

Topology Hostname

xp0id.localhost

XP Server (XP1) xp1cm.localhost

xp1cd.localhost

xp1id.localhost

To change the default hostnames:

1. Generate TLS certificates with the new hostnames.

2. In the .env file, update the Traefik reverse proxy configuration labels for each role with the
new host names.
For more information, see the documentation for Traefik Docker configuration discovery.

3. Update the .crt and .key filenames in the cert_config.yaml file.

4. Update the host names in the Windows hosts file.

1.3.6. Using non-production container images
To help developers get started quickly, Sitecore uses container images for the required services.

NOTE
The .env file in the Sitecore Experience Platform container package contains the
information you need to access the images for your chosen version and topology.

The images include:

• Sitecore roles

• Third party software - SQL Server, Redis, and Solr

• Proxy service - Traefik

WARNING
These images are for non-production use only.

The non-production images are not supported by Sitecore in a production environment. The
non-production services do not follow the recommended best practices for hosting a production
environment and should not be considered as a basis for production environments.

Sitecore uses non-production Docker images for Microsoft SQL Server, Apache Solr, traefik from
Traefik Labs, and RedisLabs Redis that are only for use on developer workstations. These images are
preloaded with the required database and search configurations specific to each product and are
designed to facilitate rapid deployment.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 9

https://docs.traefik.io/providers/docker/

2. Deploy a workstation

You use Docker for Windows to deploy the Sitecore Experience Platform (SXP) container packages.

To deploy an SXP developer workstation on containers:

1. In Docker for Windows, switch to Windows container mode.

2. Download the SXP Container Deployment Package from the Sitecore download page and
extract it to a folder on your local workstation. Navigate to the compose\<windows
version>\<topology> folder for the topology that you want to deploy, for example,
compose\ltsc2019\xp1.

3. In the topology folder, open the environment configuration file .env in a text editor. Update
all the environment variables with the appropriate values. The variables include passwords,
encryption keys, certificates, and the Sitecore license file. For more information, see the
Environment variable list.

4. To generate the required TLS reverse proxy certificates, execute the PowerShell script in
Generate TLS/SSL certificates for reverse proxy.

5. Install the self-signed root authority certificate that you just generated in the local Trusted
Root Certification Authority certificate store on your local computer. The generated root
certificate path is ./traefik/certs/rootca.crt.

6. In the Windows console, go to the folder that the docker-compose.yml file is in and run the
following Docker Compose command:

docker-compose.exe up --detach

Docker Compose pulls all the required images from the Sitecore Container Registry, creates
the required Docker network configuration, and deploys all the containers to the local
environment.

NOTE
The required images include Sitecore roles and third party services for your
chosen topology.

When the deployment is successfully completed, the Docker Compose command exits.

7. To check the Docker container status, run the following command:

docker-compose.exe ps

This command generates a list of all the containers and their current status.

8. When the status of all the containers is listed as healthy, open a browser and enter the URL for
the content management instance.
The default URLs for the XP0 topology are:

• https://xp0cm.localhost

• https://xp0cd.localhost

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 10

https://docs.docker.com/desktop/faqs/windowsfaqs/#how-do-i-switch-between-windows-and-linux-containers
https://dev.sitecore.net/Downloads/Sitecore_Experience_Platform.aspx

NOTE
You can find the default host names for the other topologies in the Update the
Windows host names topic.

The content management and content delivery instances use the HTTPS protocol on port 443.
If this port is in use by another process, you get an error message.

9. Login to the Sitecore admin section and verify that there are no errors in the Sitecore logs.

2.1. Rebuild the search indexes
When the deployment is done, you must rebuild the search indexes.

To rebuild the search indexes:

1. On the Sitecore Launchpad, open the Control Panel.

2. In the Indexing section, click Populate Solr Managed Schema.

3. In the Schema Populate dialog box, click Select All, then click Populate. Wait for the process
to finish.

4. On the Control Panel, in the Indexing section, click Indexing Manager.

5. In the Indexing Manager dialog box, click Select All, then click Rebuild.

2.2. Deploy custom modules
For Sitecore components, by default, you deploy only the Solr collections and dacpacs included in the
platform. In Sitecore 10.1 and later versions you can also deploy custom modules.

If the module you want to deploy requires database updates and/or custom Solr collections, you
might need to build a new layer on top of the mssql-init and/or solr-init images.

2.2.1. Add database updates to a module
To add database updates to a module:

1. Build a new layer on top of the mssql-init image.

2. In your build-script, add a command for the following action:

• Copy the module dacpacs from the module asset image into the c:\module_name_data
folder for the new image.

2.2.2. Add Solr collections to a module
To add Solr collections to a module:

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 11

1. Build a new layer on top of the solr-init image.

2. Add the Solr collections module configuration files from the module assets image to the
c:\data folder.

NOTE
You must use the JSON file format for collections. If the module name is sxa,
you can, for example, name the Solr collections file cores-sxa.json.

2.3. Removing the Docker environment
With Docker Compose commands, you can stop, resume, or remove a workstation environment.

The basic commands are:

• To stop a Docker Compose environment without removing its contents:

docker compose stop

• To resume a previously stopped Docker Compose environment:

docker compose start

• To remove a Docker Compose environment and all the non-mounted volumes:

docker compose down

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 12

https://docs.docker.com/compose/reference/

3. Appendices

This section contains additional information and helper functions to help you with deployment to
Docker.

3.1. Encode and compress the Sitecore license file
To compress the Sitecore license file and encode it to Base64:

1. Create a PowerShell command file, and enter the following function in it:

function ConvertTo-CompressedBase64String {
 [CmdletBinding()]
 Param (
 [Parameter(Mandatory)]
 [ValidateScript({
 if (-Not ($_ | Test-Path)) {
 throw "The file or folder $_ does not exist"
 }
 if (-Not ($_ | Test-Path -PathType Leaf)) {
 throw "The Path argument must be a file. Folder paths are not allowed."
 }
 return $true
 })]
 [string] $Path
)
 $fileBytes = [System.IO.File]::ReadAllBytes($Path)
 [System.IO.MemoryStream] $memoryStream = New-Object System.IO.MemoryStream
 $gzipStream = New-Object System.IO.Compression.GzipStream $memoryStream, ([IO.Compression.CompressionMode]::Compress)
 $gzipStream.Write($fileBytes, 0, $fileBytes.Length)
 $gzipStream.Close()
 $memoryStream.Close()
 $compressedFileBytes = $memoryStream.ToArray()
 $encodedCompressedFileData = [Convert]::ToBase64String($compressedFileBytes)
 $gzipStream.Dispose()
 $memoryStream.Dispose()
 return $encodedCompressedFileData
}

2. Run the PowerShell command file, specifying the path to the license file in the Path
parameter. For example:

ConvertTo-CompressedBase64String -Path .\license.xml

3. In the .env file, enter the resulting string into the SITECORE_LICENSE variable.

NOTE
Before pasting the resulting license string into the .env file, make sure that
there are no line breaks (\n) in the string.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 13

3.2. Create the Identity Server token signing certificate

To create the Identity Server token signing certificate:

• Use the following PowerShell script:

$newCert = New-SelfSignedCertificate -DnsName "localhost" -FriendlyName "Sitecore Identity
Token Signing" -NotAfter (Get-Date).AddYears(5)
Export-PfxCertificate -Cert $newCert -FilePath .\SitecoreIdentityTokenSigning.pfx -Password
(ConvertTo-SecureString -String "Test123!" -Force -AsPlainText)

[System.Convert]::ToBase64String([System.IO.File]::ReadAllBytes((Get-
Item .\SitecoreIdentityTokenSigning.pfx))) | Out-File -Encoding
ascii -NoNewline -Confirm -FilePath .\SitecoreIdentityTokenSigning.txt

3.3. Generate TLS/SSL certificates for reverse proxy

To generate the TLS/SSL certificates that are required by the Traefik reverse proxy container:

1. Open a Windows Command Prompt with Administrator rights.

2. Navigate to the folder containing the docker-compose.yml file.

3. Run the following commands one by one:

NOTE
This example uses the default filenames for the XM1 topology for the
generated .crt and .key files, for example, xm1cm.localhost.crt. The
filenames are found in the
compose\<version>\<topology>\traefik\config\dynamic\cert_confi
g.yaml file. If you use other filenames than the defaults for your topology, you
must update the filenames in the cert_config.yaml file.

IF NOT EXIST mkcert.exe powershell Invoke-WebRequest https://github.com/FiloSottile/
mkcert/releases/download/v1.4.1/mkcert-v1.4.1-windows-amd64.exe -UseBasicParsing -OutFile
mkcert.exe

mkcert -install

del /Q /S traefik\certs*

mkcert -cert-file traefik\certs\xm1cm.localhost.crt -key-file
traefik\certs\xm1cm.localhost.key "xm1cm.localhost"

mkcert -cert-file traefik\certs\xm1id.localhost.crt -key-file
traefik\certs\xm1id.localhost.key "xm1id.localhost"

mkcert -cert-file traefik\certs\xm1cd.localhost.crt -key-file
traefik\certs\xm1cd.localhost.key "xm1cd.localhost"

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 14

NOTE
The first time the mkcert utility runs, it might prompt you to install the
generated self-signed root certificate authority.

3.4. Environment variable list

The following table describes the environment variables and lists their default values.

Variable name Default value Description

SITECORE_DOCKER_REGISTRY scr.sitecore.com/s
xp/

Sitecore container registry

SITECORE_VERSION 10.1.3-
ltsc2019

Image tag with the version to be
pulled from the container registry

SITECORE_ADMIN_PASSWORD Sitecore application administrator
password

SQL_SA_PASSWORD SQL Server administrator password

REPORTING_API_KEY Symmetric key used to access the
Sitecore XDB Processing Service.

Length: 64-128 characters

TELERIK_ENCRYPTION_KEY Symmetric key used by the Telerik
web controls.

Length: 64-128 characters

SITECORE_IDSECRET Shared secret between the Identity
Server and client roles.

Length: 64 characters

SITECORE_ID_CERTIFICATE Identity Server certificate used to
encrypt data

SITECORE_ID_CERTIFICATE_PASSWORD Password to open the Identity
Server certificate

SITECORE_LICENSE License file content converted to
GZIP Compressed and Base64
encoded string

ISOLATION default Override for Docker isolation level

(Possible values: default, hyperv,
process)

SOLR_CORE_PREFIX_NAME sitecore A common prefix for Solr core
names. If you use an existing Solr
deployment, you must change this
to your actual Solr core name prefix.

MEDIA_REQUEST_PROTECTION_SHARED_SECRET Shared secret. You must change this
to a random string. Do not use the
default value.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 15

3.5. Common issues
This section lists some common issues related to the installation of a Developer Workstation with
containers, along with proposed solutions.

3.5.1. I cannot upload a Translations file to the website root folder
If the Upload Files dialog hangs during the upload operation, it writes the following errors to the log
file:

ERROR Could not save posted file: ja-JP.xml
Exception: System.UnauthorizedAccessException
Message: Access to the path 'C:\inetpub\wwwroot\ja-JP.xml' is denied.

This happens because the Import language dialog box uploads translations files to the website root
folder by default and for security reasons Write access is denied for the website root folder.

The upload folder, however, has Write access enabled. To resolve this issue, upload the translations
files to the upload folder.

To upload a translations file:

1. In the Open Language File dialog box, select the upload folder and then click Upload.

2. In the Upload Files dialog box, upload the translations file to the upload folder.

3. Import the translations file from the upload folder.

NOTE
The translations xml file is saved to the Media library. You can delete it after you import
the translations.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 16

3.5.2. I can only see the main Sitecore log files for the Sitecore roles
containers
The LogMonitor tool collects the log files for containers. By default, it monitors the following log files:

• System event log – error level entries

• IIS logs

• Primary Sitecore log – log.*.txt files for the Sitecore roles

• xConnect log – xconnect-log-*.txt files for the xConnect roles

Auxiliary Sitecore log files, such as for search, crawling, and publishing, are not monitored on Sitecore
containers.

To see all the Sitecore log files for a Sitecore role container, you must create a Dockerfile with the
corresponding role image and reconfigure the LogMonitor tool or replace the entire configuration file
with the updated configuration.

To reconfigure the LogMonitor tool:

1. In the c:\inetpub\wwwroot\App_data\logs folder, open the
C:\LogMonitor\LogMonitorConfig.json file.

2. In the sources node, edit the filter setting:

{
 "LogConfig": {
 "sources": [
 ...
 {
 "type": "File",
 "directory": "c:\\inetpub\\wwwroot\\App_data\\logs",
 "filter": ".*log*.txt",
 "includeSubdirectories": false
 }
]
 }
}

Now you can use the Dockerfile to build a new docker image for the Sitecore role.

You can also view all the Sitecore log files directly from the container’s file system by connecting to the
corresponding container from a PowerShell or command prompt terminal.

Sitecore XP 10.1.3 Developer Workstation Deployment With Docker

© Copyright 2023, Sitecore® - all rights reserved. 17

	Sitecore XP 10.1.3 Developer Workstation Deployment With Docker
	Table of Contents
	1. Introduction to Docker Compose
	1.1. Supported Sitecore topologies for Docker
	1.1.1. XP Workstation (XP Single)
	1.1.2. XM Server (XM Scaled)
	1.1.3. XP Server (XP Scaled)

	1.2. Sitecore Docker Compose requirements
	1.2.1. Software requirements
	1.2.2. Hardware requirements
	1.2.3. Network requirements

	1.3. Prepare for deploying
	1.3.1. Understanding environment variables
	1.3.2. Compressing the Sitecore license file
	1.3.3. Set up the Identity Server token signing certificate
	1.3.4. Generating TLS/HTTPS certificates
	1.3.5. Update the Windows host names
	1.3.6. Using non-production container images

	2. Deploy a workstation
	2.1. Rebuild the search indexes
	2.2. Deploy custom modules
	2.2.1. Add database updates to a module
	2.2.2. Add Solr collections to a module

	2.3. Removing the Docker environment

	3. Appendices
	3.1. Encode and compress the Sitecore license file
	3.2. Create the Identity Server token signing certificate
	3.3. Generate TLS/SSL certificates for reverse proxy
	3.4. Environment variable list
	3.5. Common issues
	3.5.1. I cannot upload a Translations file to the website root folder
	3.5.2. I can only see the main Sitecore log files for the Sitecore roles containers

