@ SITECORE

Sitecore Publishing Service
Installation and Configuration Guide

How to install and configure the Sitecore Publishing Service

April 4, 2023
Sitecore Publishing Service 6.0.0

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

Table of Contents

I a oo I8 ot o] o NPT PSPPI RO PP PPPPPPPN 4
1.1. About the Publishing Service MoOdUIEuuiiiiiiiiiiiiiiiiiiiiiriiirerirererererererererererererererr. 4
1.1.1. PUDIISNING SEIrVICE CONCEPES tvvvvvvrrrrrrrrrrertureererrrterrsrrereresssesereseresersreserererereree. 5

2. Installing the Sitecore PUDIISNING SEIVICEcouuuuiiiiiiiiiiiiiiiiiiie et e e eeeria s 7
2.1 PrEIQQUISITES .eunieiiiiieeeiiiie ettt ettt e e et e ettt e ettt e e e ettt s e eeba e e eebaa s eaebaaeeaetanseaesaneeeernnnnns 7
2.1.1. Sitecore Publishing Service reqUIr€mMENTSccoviiiiiiiiiiiiiiiinee e e e e eeevriinn e e eaaaens 7
2.2. ManUal INStallation ..o s 7
2.3, Scripted INSTAllation ..o 10
2.4. Scaled environment CONSIAEIAtIONS ooeeeeeeeeieee e 11
3. Sitecore Publishing Service COmMmMaNdScooeeeeiiiiiiieieeeee s 13
S 28 I 1 oY U ot oY o 13
3.1.1. General execution fOrMAt .oooeeieeeie e 13
T 0 I =L PSP TRUPPPR 13
3.2. WED COMMIANG .ttt e e e e ettt e e e e s st eeeeeeesanabbbbreeeeeeessaaarrees 14
SR I o To 1Sl ole]a) i F={U =Y uTo g I o] o] uTo] |- S 14
3.2.2. Custom configuration ValUESccoeeiiiiiiiiieie e 14
3.3 1S COMIMIANA e 15
3.3.7. INSEAll OPLIONS ..ttt e ettt e e e e e e e et bbb r e e e e e e e eaaabb e e eaaaaes 15
3.4. Configuration COMMANG ...cooie i s 16
3.4.1. SetConnectionString COMMANT ..coeiiieieieie e 16
3.5. SChema COMMANG ... 17
R TR L U o = { =T [N 17
ST B o 11 o1 T [T 18

S TR TR <] PSPPSR 18
354 LISE ittt et e e et e e e e e e e e e e e e e e n bbb areeeeesaaaanr e 19
3.6. IteMREVISION COMMIANG eiiiiiiiiiiieiee ettt e e e ettt e e e e e s st ereeeeeesenabbbeneeas 20
SN I I 1 TP PP P PO PP PPPPPRPPH 20
BL0.2. FiX ettt ettt e e e e ettt et e e e e e e bbbttt e e e e e e e bbb baeeeeeeesaaaabeee 20

4, Configuring the Sitecore PUblishing Servicecccccciiiiiiiiii 21
o I U o] T a1 [g ¥ = = T = PP PPUPPPPT 21
4.2. CoNFIGUIAtioON SOUITES ..oeiiiiiiiiieiiiee et 24
4.2.1. Configuration stored on diSKccooiiiiiiiiiiiii 24
4.2.2. Configuration through environment variablescccccciii 25
4.2.3. Configuration through command line arguUmMentsccccccviiiiiiiiiiiiii 25
4.3, Configuration taskscoiiiiiiiiiii 25
4.3.1. CoNfIgUIE IOZEINE oiiiiiiiiiiiii 25
4.3.2. Set the CONNECLION StINES .iiiiiiiiiiiiiii e 26
4.3.3. 0verride O @dd @ SEIVICE ..ccoviiueiiiiiiieeee ittt e e e ettt e e e e st e e e e e e s s saabbbereeeeeeeens 26
4.3.4. Set OPLIONS ON @ SEIVICE .eeitiieiiiiieeeieiie e ettt e e ettt e e ettt e e retba e e ettt seeestasesesannseeesnnnseenees 26
4.3.5. Configuration file NAMING ... 27
4.3.6. Reference configuration valuescccccciiiiiiiiiiiii 27
4.4, Database coNfigUration ... 28
4.4.1. CONNECLION STINES ..uiieeiiiiiiiiiie ettt e et ettt e e e et e e eabbb e e eeeeeeenenes 28
4.4.2. DefaultConNeCtiONFACLONYcooiiiiiiiiiii e 29
N R (o =] o= Tei o o AP PPTTTTPUPPPTPPPPTNN 29
444, STOrEFEATUIELISTS ..uuiieeieiiieiiiiie ettt e e ettt e e e e e ettt s e e e e e e eeebb s e e eeeeeeenenas 31
4.4.5. Custom data Providers ... 31
4.5, Schema CONFIBUIAtION ..iiiiiiiiiiiii e, 33
4.5.1. The DeploymMeNnt IMAP iiiiiiiiiiiiii e 34
4.5.2. SCREIMAS ..eetieiieeeeeiie ettt e ettt e e e ettt e e e e e e st e et e e e e e s aaaabbbareeeeesseaaabbbbreeeeaeeeanns 34

© Copyright 2022, Sitecore® - all rights reserved. 2

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

4.5.3.Validating SChemas ... 35

4.6. Task SChEAUIING «.oiiiiiiii 35
4.6.7. CONFIZUIE TASKS 1iiiiiiiiiiiiii 35
4.6.2. DefiNiNg @ TasK .iiiiiiiiiiiiii 37
4.6.3. DefiNiNg @ triZEEN «iiiiiiiiii i, 37

4.7. CoNtent @Vailability ..uuueiiiie i e e e e e e et e e e e e aeearaas 38
4.7.1. Configure content availability on the CD server and on the CM serverccccccceeeeeen. 39

4.8. Transient error tolerance for SQL AZUIEouueviiei i 40
4.8.1. CONNECLION DENAVIOIS .iiiiiiiiiiiiii 41
4.8.2. Default ConfigUuration ... 41
4.8.3. SQL Azure configuration ..o 42

4.9. Reporting field Changescooviiiiiii 44
4.10. Logging CONfIZUIatioN ..iiiiiiiiiiiiiiiiii e 44
4.10.1. Log configuration [0CatioNccoviiiiiiiiiiiiiii 45
4.10.2. Configuring Logger Levels (FIltErs)ccciiiiiiiii 45
4.10.3. CoNfiBUNINE SEIIIOE 1oiiiiiiiiiiii i, 46
4.10.4. Console and File SINKS ..oooiiiiiiii 46
4.10.5. ORI SINKS oieiiiiieie e 47
4.11. Excluding items from automatic deletion from the target databasesccccccccciiiinnn. 47
4.12. Configure the Publishing Service to use Application INSightscccccc 48
4.T2.71. PrEIQOUISITES ererrruiieeeeeiiieiitiie e e ettt ettt e e e ettt eet s s e e e e e ettt bbb s e eeeeeeeenbbaaseeeeeaeeenenns 48
4.12.2. Configure Publishing Service to use Application INSightsccccccciiiiiiiiii. 49
4.12.3. Adding Serilog.Sinks.ApplicationInSights ... 49
4.12.4. Custom configuration of ApplicationINSightsooveiiiiieiiiiiiii e, 50
413, TroUBIESNOOTING ooiiiiiiiiiiiii 51

5. High Availability Configuration of the Sitecore Publishing Serviceccccccvuvvvivivivivivivivininnnnnn 52
5.1 INEFOAUCTION ittt st 52
5T T WOTKFIOW L 52

5.2, O PrEIMISE iiitieeiiiie ettt ettt e ettt e e ettt s e ettt s e e eataa s e eeataa s eeaataaeeeatsasseaetsasseenaranseeensanserees 53
5.3 AZUIE ettt e ettt e e e et e e 53
5.4. Configuration (AQVANCEA)uuuuuuuiiiiiiiitiiiiiiiiiitbttbtbebebeb bbbttt bttt e e beeeeeseseseneeeeenenes 54
5.5. Supported deploymMent MOEISuuuuiiiiiiiiiiiiiiiiiiiiiiii bbb bebebebebebebebeeereeeeeeeee 54

6. PUBIISNING SEIVICE AP .o 56
(SR B\ o e [o ol U] o [=Tq 1 7= 4 o] o K 56

7. Upgrade the PUBIISRING SEIVICE ...cooeeeeeeeee s 58
7.1. Configure a custom directory with item resource filescccoovvoiiiiiiiiiiiiiii e, 59

8. Publishing Service SUPPOIt MAtriX .oooeeeveieieieieieieieie e ee e e s 61
R U] o] 1] al1 g} =TT Y/ (ol =l @] o] (o] o 62
R IIDE |] o<1 T aT=Tald o] o160 o] 4[] o -3 62
9.2. PublishJobHaNdIErOPIONS ...ccvviiiiiiiiiieiiiiiiiiiiie ettt e e e e e eesabbs s e e e e e eaesbeens 63
9.3, PrOMOTEIOPTIONS eeunieiiiieeeiiiie ettt ettt e e eete e et et e e e eebi s s e taba e eeeba e eaabaneeeernneereraneeeesnnns 64

© Copyright 2022, Sitecore® - all rights reserved. 3

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

1. Introduction

This document describes how to install and configure the Sitecore Publishing Service.
The document contains the following chapters:

+ Chapter 1 - An introduction to the Sitecore Publishing Service module.

+ Chapter 2 - Step-by-step instructions for installing the Sitecore Publishing Service manually or
with a script.

+ Chapter 3 - The various command line arguments and startup modes supported by the Sitecore
Publishing Service.

+ Chapter 4 - Step-by-step instructions for configuring the Sitecore Publishing Service.
+ Chapter 5 - Description on how you can support high availability requirements.

+ Chapter 6 - Information about the Sitecore Publishing Service API.

+ Chapter 7 - Step-by-step instructions for updating the Sitecore Publishing Service.

+ Chapter 8 - The Sitecore Publishing Service Support Matrix.

+ Chapter 9 - Publishing Server Options

1.1. About the Publishing Service module

The Publishing Service module is an optional replacement for the existing Sitecore publishing
methods. This module increases publishing throughput, reduces the amount of time spent publishing
large volumes of items, and offers greater data consistency and reliability. The module also improves
the user experience and provides better visual feedback to the user on the state of the publishing
system.

The Publishing Service does not use any of the features, pipelines, and settings in the current
publishing system. It is an entirely new way of publishing Sitecore items and media.

The Publishing Service runs a separate process to the Sitecore CM instance.
Installation involves:

1. Installation and configuration of the Publishing Service.

2. Installation of the integration module package on your Sitecore instance. The integration
module ensures that every publishing action, such as triggering a site publish, is handed on to
the publishing service.

© Copyright 2022, Sitecore® - all rights reserved.

Sitecore Publishing Service Installation and Configuration Guide @ s ITE co R E

SITECORE CM USER SITECORECM PUBLISHING SERVICE

Click Site Publish

Queue ‘Site Publish’

Do ‘Site Publish’

SITECORE CM USER SITECORE CM PUBLISHING SERVICE

When you have installed the Publishing Service, it manages the whole publishing process:

1. It queues and executes publishing jobs.

2. It connects to the Source and Target (SQL) databases directly - reading and writing items in
bulk.

3. Itissues events, such as cache clearing events, on Content Delivery servers.

4. ltreports status information back to Ul features, such as the Publishing Dashboard

application.
SITECORECD SITECORECM PUBLISHING SERVICE SOURCE(MASTER) TARGET(WEB)
Queue ‘Site Publish’
Do ‘Site Publish’
Calculate manifest
Read publishable items
Write items
Clear caches
Clear caches
SITECORE CD SITECORE CM PUBLISHING SERVICE SOURCE(MASTER) TARGET(WEE)

1.1.1. Publishing Service concepts
The following Publishing Service concepts relate to the different stages of the publishing work that are
being handled:

* Publishing jobs
Previously, when a user chose to publish something, the publishing dialog box remained open
for the duration of the publish process. This was awkward if the user needed to reboot or if their
session ended because they could not see the status of the publishing job.
The publishing service places all publishing jobs in a queue. When you request a publishing job
of any kind, it is queued and then processed as soon as possible. You can see all the active,
queued, and completed jobs in the Publishing Dashboard application.

© Copyright 2022, Sitecore® - all rights reserved. 5

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

* Manifests
This is the collective name for all the tasks that a publishing job performs. The Publishing Service
calculates the manifest at the beginning of the publishing job, before it moves any data.
The Publishing Service looks at the items to see if there any restrictions that would prevent them
from being published:

+ Valid dates/workflow states, and so on.
+ Evaluating whether the item might need to be deleted.
« Ifitis a media file.

+ If extra data needs to be moved along with the item.
Valid items are added to the manifest as a ‘Manifest Step'. Each publishing target gets
its own manifest. A publishing job can therefore consist of one or more manifests. The
completed manifest is a list of all the items that will be used in the next stage of the
process - the Promotion.

* Promotion
This term describes the process of moving the items and data from the source, most often the
Master database, to one or more publishing targets, such as the Web database.
The Publishing Service creates a manifest and then moves it to one or more publishing targets.

* Manifest results
A list of the changes that were made during the promotion of the manifest. This includes things
like item name changes and template updates.
At the end of the publishing job, the results are passed to the publishEndResultBatch
pipeline in Sitecore. Developers can hook into this pipeline to work with these results and update
any third-party systems or features that may need to know about the changes to items.
If there is no work to do, that is, if an item is unchanged even though it was in the manifest, a
manifest result is not generated.

© Copyright 2022, Sitecore® - all rights reserved. 6

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

2. Installing the Sitecore Publishing Service

You can install the Sitecore Publishing Service manually or by using the utility scripts that come with
the package.

This chapter describes:

* Prerequisites
+ Manual Installation
+ Scripted Installation

* Scales Environment considerations

2.1. Prerequisites

2.1.1. Sitecore Publishing Service requirements
The Sitecore Publishing Service comes in a single ZIP archive:

+ Sitecore Publishing Service 6.0.0-netcoreapp3.1 zip file (.NET Core application)

The .NET Core application of the Publishing Service 6.0.0 requires the .NET Core Runtime to be
installed on the host machine. When running this version on Windows, we recommend to run the
service under IS, because this gives greater configurability of, for example, host addresses and port
binding.

Another way to execute the service, using the command:
dotnet Sitecore.Framework.Publishing.Host.dll
The prerequisites for the Sitecore Publishing Service 6.0.0 release are:

* .NET Core 3.1.17 Runtime
+ Windows Server Hosting (.NET Core)

To enable the service to run under IIS, you must install the Windows Server Hosting package from
the .NET core hosting bundle 3.1.17 download page.

2.2. Manual installation

Before you install the Sitecore Publishing Service, make sure you have all the prerequisites in place.

To install the Sitecore Publishing Service manually:

© Copyright 2022, Sitecore® - all rights reserved. 7

https://dotnet.microsoft.com/download/dotnet/3.1

Sitecore Publishing Service Installation and Configuration Guide @ s I T E co R E

1. Download the Sitecore Publishing Service package from the Sitecore Downloads page.

2. Extract the content of the archive to a folder of your choice. For example:
C:\inetpub\wwwroot\sitecorepublishing.

3. Create anew sitecoreruntime folder in the installation folder. For example:
C:\inetpub\wwwroot\sitecorepublishing\sitecoreruntime

4. Copy the Sitecore license file to the sitecoreruntime folder.

5. Copy the item resource files from the CM Sitecore instance (for Sitecore 10.1
and higher). Copy dat-files for all databases except the Core preserving the
folder structure. For example, from C:\inetpub\wwwroot\sitecore\App Data\items
to C:\inetpub\wwwroot\sitecorepublishing\items\sitecore and
C:\inetpub\wwwroot\sitecore\sitecore modules\items to
C:\inetpub\wwwroot\sitecorepublishing\items\modules

6. In IS, create a new site pointing to the installation folder.

7. Start the IIS Manager and in the Connections panel, expand Sites. Right-click Sites and then
click Add Website.

8. Inthe Add Website dialog, fill in the required fields.
|

Site name:
sitecore.publishing sitecore.publishing Select...
Content Directory
Physical path:
ci\inetpub\wwwroot\sitecarepublishing

Pass-through authentication

Connect as... Test Settings...
Binding
Type: 1P address: Port:
http v | AllUnassigned v | (80
Host name:
sitecore.publishing|
Example: www.contoso.com or marketing.contoso.com

If you add a custom host name, you must update your hosts file
(C:\Windows\System32\drivers\etc)\).

9. Inthe lIS Manager, right-click the application pool for the website that you created, and then
click Basic Settings.

10. In the Edit Application Pool dialog, in the .NET CLR version field, select >No Managed Code.

[sitecore.publishing| |

.MET CLR version:
I No Managed Code v I

Managed pipeline mode:

Integrated v

Start application pool immediately

© Copyright 2022, Sitecore® - all rights reserved. 8

https://dev.sitecore.net/

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

NOTE

The Application Pool user must have Read, Execute, and Write permissions to the
site's physical path.

11. In the IIS Manager, right-click the application pool for the website that you created, and then
click Advanced Settings.

12. In the Advanced Settings dialog, in the IdleTime-out (minutes) field, enter 0.

Advanced Settings ? x
~ (General) @
MET CLR Version No Managed Code
Enable 32-Bit Applications False
Managed Pipeline Made Integrated
Name sitecore.publishing
Queue Length 1000
Start Mode OnDemand
v CPU
Limit (percent) 0
Limit Action NoAction
Limit Interval (minutes) 5
Processor Affinity Enabled False
Processor Affinity Mask 4204967295

Processor Affinity Mask (64-bit ¢ 4294967295
~ Process Model
Generate Process Medel Event L
Identi ApplicationPoolldentil
Idle Time-out (minutes) 0
Idle Time-out Action Terminate hd

Idle Time-out (minutes)

[idleTimeout] Amount of time (in minutes) a worker process will remain
idle befare it shuts down. A warker process is idle i it i not processing
requests and no new requests are received.

OK Cancel

13. Configure the core, master, web, and service connection strings for the service along with any
additional configuration values.
For more information about the configuration command, see SetConnectionString Command.

NOTE

Depending on which Sitecore version you are using, you might want to
consider disabling the multiple link database mode as described in the Sitecore
Publishing Service Module installation guide available on the Sitecore download

page.

14. To upgrade the database schema, run the schema upgrade command from the extracted
folder:

Sitecore.Framework.Publishing.Host.exe schema upgrade --force

For more information about the schema upgrade command, see Upgrade.

15. To access your website, enter http://<sitename>/api/publishing/operations/status
in your browser.
If you receive a value of { "status" : 0, “statusType”: “0k” 1}, the application is
installed correctly. If you receive any other value, check the application logs for further details.

© Copyright 2022, Sitecore® - all rights reserved. 9

https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx
https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

2.3. Scripted installation

The Sitecore Publishing Service can be installed using commands built into the application.

To perform a scripted installation:

1.

7.

Extract the contents of the archive to a folder of your choice. For example:
c:\inetpub\wwwroot\publishingservice

This will be the location where IIS points to the service.

Create a new sitecoreruntime folder in the installation folder. For example:
C:\inetpub\wwwroot\publishingservice\sitecoreruntime.

Copy the Sitecore license file to the sitecoreruntime folder.

Copy item resource files from the CM Sitecore instance (for Sitecore 10.1

and above). Copy dat-files for all databases except the Core preserving the

folder structure. For example, from C:\inetpub\wwwroot\sitecore\App Data\items
to C:\inetpub\wwwroot\sitecorepublishing\items\sitecore and
C:\inetpub\wwwroot\sitecore\sitecore modules\items to
C:\inetpub\wwwroot\sitecorepublishing\items\modules.

To enable the execution of multiple batches on a single connection, configure the database
connection strings that support Multiple Active Result Sets.

NOTE

If the connection string does not support Multiple Active Result Sets (), it will be
changed when you invoke the configuration command.

If the provided connection string does not already exist, it will be added to the configuration
when you invoke the configuration command. Otherwise, it replaces the connection string
with the same key. For example, to configure the core, master and web connection strings for
the “production” environment, run the following commands:

* $ Sitecore.Framework.Publishing.Host --environment production
configuration setconnectionstring core 'value'

* $ Sitecore.Framework.Publishing.Host --environment production
configuration setconnectionstring master 'value'

* $ Sitecore.Framework.Publishing.Host --environment production
configuration setconnectionstring web 'value'

For more details, see SetConnectionString Command.

Set additional configuration values as needed. For example, to set the instance name for the
“production” environment:

+ Create a production folderin the
c:\inetpub\wwwroot\publishingservice\sitecoreruntime folder.

* Create a sc.publishing.xml file in the
c:\inetpub\wwwroot\publishingservice\sitecoreruntime\production folder.

© Copyright 2022, Sitecore® - all rights reserved. 10

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

+ Add the instance name to the Sitecore:Publishing:InstanceName elementin the
newly created sc.publishing.xml file. For more details about InstanceName, go to
On premise.

NOTE

Depending on which Sitecore version you are using, you might want to
consider disabling the multiple link database mode as described in the Sitecore
Publishing Service Module installation guide available on the Sitecore download

page.

8. Update the relevant schemas. For example, to upgrade the schemas to the latest versions, run
the schema command:
$ Sitecore.Framework.Publishing.Host schema upgrade —--force

9. When the instance is configured and the schemas have been upgraded, you can install it
into IS using the following command: $ Sitecore.Framework.Publishing.Host iis
install --hosts —--force
For more details, see |IS Command.

2.4. Scaled environment considerations

By default Sitecore Publishing Service stores Links Data in the Core database.

NOTE

The following information is only relevant if you have disabled multiple link databases
on your installation.

For more information on enabling or disabling multiple link databases, see the
Sitecore Publishing Service Module installation guide which is available on the Sitecore
download page.

If you are running the Publishing Service in a scaled environment and if your Links Data is stored in
a different database than the Core database, you must update the Publishing Service configuration
accordingly.

For example, if the Links Data is stored in the Web database, then the Publishing Service configuration
needs the following override:

<?xml version="1.0" encoding="utf-8"?>
<Settings>
<Commands>
<Web>
<Services>
<Add>
<DefaultConnectionFactory>
<Options>
<Connections>
<Links>
<Type>Sitecore.Framework.Publishing.Data.AdoNet.SglDatabaseConnection,
Sitecore.Framework.Publishing.Data</Type>

© Copyright 2022, Sitecore® - all rights reserved. 11

https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx
https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx
https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx
https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx

Sitecore Publishing Service Installation and Configuration Guide @ s I T E co R E '

<Options>
<ConnectionString>Web</ConnectionString>
</Options>
</Links>
</Connections>
</Options>
</DefaultConnectionFactory>
</Add>
</Services>
</Web>
<Schema>
<Services>
<Add>
<DefaultConnectionFactory>
<Options>
<Connections>
<Links>
<Type>Sitecore.Framework.Publishing.Data.AdoNet.SglDatabaseConnection,
Sitecore.Framework.Publishing.Data</Type>
<Options>
<ConnectionString>Web</ConnectionString>
</Options>
</Links>
</Connections>
</Options>
</DefaultConnectionFactory>
</Add>
</Services>
</Schema>
<ItemRevision>
<Services>
<Add>
<DefaultConnectionFactory>
<Options>
<Connections>
<Links>
<Type>Sitecore.Framework.Publishing.Data.AdoNet.SglDatabaseConnection,
Sitecore.Framework.Publishing.Data</Type>
<Options>
<ConnectionString>Web</ConnectionString>
</Options>
</Links>
</Connections>
</Options>
</DefaultConnectionFactory>
</Add>
</Services>
</ItemRevision>
</Commands>
</Settings>

NOTE

The ConnectionString nodes in the Commands, Schema, and Services nodes must
all be set to the same value.

You must also update the database schema.
To upgrade the database schema, run the following command:

Sitecore.Framework.Publishing.Host.exe schema upgrade --force

© Copyright 2022, Sitecore® - all rights reserved.

12

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

3. Sitecore Publishing Service commands

This chapter covers the commands that you can use to configure or execute the Sitecore Publishing
Service.

This chapter describes:

* Introduction

+ Web command

+ IS command

+ Configuration command
* Schema command

* [temRevision command

3.1. Introduction

The Sitecore Publishing Service supports various command line arguments and startup modes. You
can call the application directly to run the default command and optionally pass arguments to modify
the execution.

The Web command is the default command for the application. For more details, see Web Command.

3.1.1. General execution format
When you execute the commands, the following applies:

*+ Executing the .exe will run the default command.
+ Options are named, for example, -h, --help. Some of the options may require passing values.

+ Arguments are passed separated with a space immediately after the command and before any
options.

+ Child commands are passed as named arguments immediately after the parent command.

3.1.2. Logs
Any output from a command is added to a Publishing-{data}.log file in the Logs folder in the
root of the Publishing Service application.

© Copyright 2022, Sitecore® - all rights reserved. 13

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

3.2. Web command

The Web command is the default command for the application. When the Sitecore Publishing Service
starts, it loads the configuration values from the following sources:

*+ The Sitecore configuration files.
« The ASP.NET CORE environment variables.
* The Sitecore environment variables.

¢ The command line.

NOTE

The configuration values are loaded in the above order, where the values at the
command line supersede the others.

The command does not support any specific options or arguments, except from help and version.
However, it does allow the passing of key-value pairs to allow starting the application with different
configurations.

You can pass the following options:

Option Template Type Details Default value

Help -? | --help Switch Displays help information.

3.2.1. Host configuration options

To change the startup behavior of the application, you can use the following host configuration
options through the command line or as environment variables:

Option Sitecore Environment Command line Type Details
Environment SITECORE_ENVIRONMENT --environment Single - Starts the service in the
String specified environment.

3.2.2. Custom configuration values

Custom configuration values can be passed at the command line or defined through the environment.
The values can be set using the following types:

Type Example

Configuration key Publishing:InstanceName

Sitecore environment variable SITECORE Publishing InstanceName = sps_dev
Command line -- --Publishing:InstanceName "sps dev"

When you set the custom configuration values, use the following formats:

+ To set the value as an environment, replace the colon "' with a double underscore'_".
+ The environment prefix consists of a type (ASPNETCORE or SITECORE) and a single underscore.

+ The command line arguments must have the prefix '--'.

© Copyright 2022, Sitecore® - all rights reserved. 14

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

3.3. 1IS command

You can install the Publishing Service into the IIS. When you run the command, the site is configured
in IS under the specified site name and port. The command creates two bindings based on the
specified site name and the machine name and, if requested, it can update the hosts file.

When you run the commands, you may receive the following exception:

Exception Information Resolution

Cannot read configuration One or more IIS configuration files Execute the command as a user
file due to insufficient cannot be read by the current user. with the correct permissions.
permissions

3.3.1. Install options
Use the following when you install the Publishing Service on IIS:

Option Template Type Details Default Value
Help -? | --help Switch Displays help
information.
Version --version Switch Displays version
information.
Verbosity --verbosity Single - Specify the level where Information
LogLevel the information is

logged to the screen.

Site Name -s | --sitename Single - String Specify the site that 'sitecore.publishing
must be installed. '

App Pool -a | --apppool Single - String Specify the application The site name
Name pool for the site.
Port Number -p | --port Single - Int Specify the port that 80

must be assigned to the
default binding. Must be
an integer.

Force --force Switch If the site already
exists, this switch
overwrites the current
configuration. Without
this, the command fails.

Hosts --hosts Switch Update the hosts file
entry.

For example:

+ To install the service in IIS using the default values:

$ Sitecore.Framework.Publishing.Host iis install

+ To install the service in IIS using specific site and app pool names:

$ Sitecore.Framework.Publishing.Host iis install -site publishing.service -app
publishing.service

© Copyright 2022, Sitecore® - all rights reserved. 15

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

+ To install the service in IIS using specific site and app pool names, a custom port, and update
the machines hosts file (the use of force ensures that any existing site with the same name is
updated):

$ Sitecore.Framework.Publishing.Host iis install -site publishing.service -app
publishing.service --port 5001 --force -hosts

3.4. Configuration command

The configuration command allows configuration values to be persisted in the configuration files for
the global or the specific environments.

When you run the commands, you might receive the following exception:

Exception Information Resolution
Access to the path '..."is The users do not have access to Execute the command as a user
denied change the configuration files. with the correct permissions.

3.4.1. SetConnectionString command
To set or change a connection in a configuration file, use the SetConnectionString command.

The required arguments are:

Argument Example Details

Name Core Specify the name of
the connection string
that you want to

configure.

Value Data Source=.\\SQLSERVER17;Initial Specify the value of
Catalog=511108sc823 core;Integrated the connection string.
Security=False;User
ID=***;Password=***;MultipleActiveResultSets=True; If the value does not

support MARS, it will
ConnectRetryCount=15;ConnectRetryInterval=1 be updated

The command options are listed below.

Option Template Type Details Default value

Help -? | -help Switch Displays help information

File Name -f | --file Single - String The name of the file where changes will be sc.publishing.xml

persisted

For example:

+ To set a connection string value for the Core database:

© Copyright 2022, Sitecore® - all rights reserved. 16

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

$ Sitecore.Framework.Publishing.Host configuration setconnectionstring core Data
Source=.\\SQLSERVER17;Initial Catalog=511108sc823 core;Integrated Security=False;User
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1

+ To set the Core database connection string to point to the Master connection string
configuration:

$ Sitecore.Framework.Publishing.Host configuration setconnectionstring core
{Sitecore:Publishing:ConnectionStrings:Master}

3.5. Schema command

With the schema commands, you can install, update, and reset publishing schemas in the databases.

NOTE

Like the Web command, all the commands allow for the configuration values to be
overridden.

When you run the commands, you might receive the following exception:

Exception Information Resolution
Create table permission The user connecting to the database does Provide a connection string with
denied in database not have the required permissions. the correct permissions.

3.5.1. Upgrade

Use the following options to upgrade the connections to the specified schemas:

NOTE

To apply changes, you must use the --force flag option.

Option Template Type Details Default Value
Help -? | --help Switch Displays help information.
Version --version Switch Displays version information.
Verbosity --verbosity Single - Specify the level at which Information
LoglLevel information is logged to the
screen.
Environment -e|--environment Single - String Specify the environment Production

folder to load the connection
string configuration.

Schema -sv | --schema- Single - Int Specify the schema versionto 0
Version version downgrade to.
Force --force Switch Provide this option for the

changes to be persisted.

For example:

© Copyright 2022, Sitecore® - all rights reserved. 17

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

+ To upgrade the schemas to the latest version:

$ Sitecore.Framework.Publishing.Host schema upgrade —--force

+ To upgrade the schemas to version 3;

$ Sitecore.Framework.Publishing.Host schema upgrade -sv 3 --force

3.5.2. Downgrade

Use the following options to downgrade schemas for connections.

NOTE

To apply changes, you must use the --force flag option.

Option Template Type Details Default Value
Help -? | --help Switch Displays help information.
Version --version Switch Displays version information.
Verbosity --verbosity Single - Specify the level at which Information
LogLevel information is logged to the
screen.
Environment -e|--environment Single - String Specify the environment Production

folder to load the connection
string configuration.

Schema -sv | --schema- Single - Int Specify the schema versionto 0
Version version downgrade to.
Force --force Switch Provide this option for the

changes to be persisted.

For example:
+ To downgrade the schemas to version O:

$ Sitecore.Framework.Publishing.Host schema downgrade --force

+ To downgrade the schemas to version 3:

$ Sitecore.Framework.Publishing.Host schema downgrade -sv 3 --force

3.5.3. Reset

Use the following options to reset the connections to use the specified schema:

NOTE

To apply changes, you must use the --force flag option.

Option Template Type Details Default Value

Help -? | -help Switch Displays help information.

© Copyright 2022, Sitecore® - all rights reserved. 18

Sitecore Publishing Service Installation and Configuration Guide

@ SITECORE

Option Template Type Details Default Value
Version --version Switch Displays version information.
Verbosity --verbosity Single - The level at which information Information
LogLevel is logged to the screen.
Environment -e|--environment Single - String Specify the environment Production
folder to load the connection
string configuration.
Schema -sv | --schema- Single - Int Specify the schema versionto 0
Version version downgrade to.
Force --force Switch Provide this option for the
changes to be persisted.
For example:

« To reset the schemas to the latest version:

$ Sitecore.Framework.Publishing.Host schema reset —--force

* To reset the schemas to version 3:

$ Sitecore.Framework.Publishing.Host schema reset -sv 3 —--force

3.5.4. List

Use the following options to display information for each schema/connection:

Option Template Type Details Default Value
Help -? | --help Switch Displays help information.
Version --version Switch Displays version information.
Verbosity --verbosity Single - Specify the level at which Information
LoglLevel information is logged to the
screen.
Details -d | --details Switch Display more information for
each schema.
Environment -e|--environment Single - String Specify the environment Production

folder to load the connection
string configuration.

For example:

* To list detailed information for all schemas:

$ Sitecore.Framework.Publishing.Host schema list -d

+ To list basic information for all schemas in the ‘Development’ environment:

$ Sitecore.Framework.Publishing.Host schema list -e Development

© Copyright 2022, Sitecore® - all rights reserved.

19

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

3.6. ItemRevision command

With the itemrevision command, you can query and repair the item data stored in the Sitecore
databases that relate to publishing.

3.6.1. List

Use the following options to check the format of the revision ID of each item in the Source and Target
databases.

Option Template Type Details

Help -? | --help Switch Displays help information.

Detailed -d | --details Switch Displays details of each item with an invalid revision ID.
For example:

+ To list a summary of the number of invalid revision IDs in each database:
$ Sitecore.Framework.Publishing.Host.exe itemrevision list

+ To list each item with an invalid revision ID:
Sitecore.Framework.Publishing.Host.exe itemrevision list -d

3.6.2. Fix

Use the fix command to repair the format of the revision ID of each item in the Source and Target
databases.

Option Template Type Details

Fix fix Switch Changes each incorrect revision ID to a correct value.

For example:

* To correct each invalid revision ID for items in each database:
$ Sitecore.Framework.Publishing.Host.exe itemrevision fix

© Copyright 2022, Sitecore® - all rights reserved. 20

Sitecore Publishing Service Installation and Configuration Guide @ s I T E co R E

4. Configuring the Sitecore Publishing Service

The Sitecore Publishing Service supports custom configurations.
This chapter contains the following sections:

* Publishing Targets

+ Configuration sources

+ Configuring options

+ Database configuration

* Schema configuration

+ Task scheduling

+ Content availability

* Transient error tolerance for SQL Azure

* Reporting field changes

* Logging configuration

* Excluding items from automatic deletion from the target databases
+ Configuring the Publishing Service to use Azure Application Insights

* Troubleshooting

4.1. Publishing targets

The Publishing Service is configured to use a single publishing target by default, - the Internet.

If you want to publish to another publishing target, you must configure it.

NOTE

We recommend that you create a patch file to edit the configuration files.

To configure a publishing target:

1. Add the connection string for the new publishing target database to the ConnectionStrings
section of the configuration

<?xml version="1.0" encoding="utf-8"?>
<Settings>
<Publishing>
<ConnectionStrings>
<stage> Data Source=.;Initial Catalog=Preview;Integrated

Security=True;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1</
stage>

</ConnectionStrings>

© Copyright 2022, Sitecore® - all rights reserved. 21

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

</Publishing>
</Settings>

2. Add the new publishing target and resource file connections to the
DefaultConnectionFactory configuration section.

The name of the XML element in the DefaultConnectionFactory section must be the same

as the name of the publishing target in Sitecore.

<?xml version="1.0" encoding="UTF-8"?>
<Settings>
<Commands>
<Web>
<Services>
<Add>
<DefaultConnectionFactory>
<Options>
<Connections>
<Stage> <!-This should be the name of the target in Sitecore ->
<Type>Sitecore.Framework.Publishing.Data.AdoNet.SglDatabaseConnection,
Sitecore.Framework.Publishing.Data</Type>
<LifeTime>Transient</LifeTime>
<Options>
<ConnectionString>Stage</ConnectionString>
<DefaultCommandTimeout>120</DefaultCommandTimeout>
<Behaviours>
<backend>sqgl-backend-default</backend>
<api>sqgl-api-default</api>
</Behaviours>
</Options>
</Stage>
<StageResources>
<Type>Sitecore.Framework.Publishing.Data.Resourceltems.ResourceConnection,
Sitecore.Framework.Publishing.Data.Resourceltems</Type>
<LifeTime>Transient</LifeTime>
<Options>
<Paths>
<Sitecore>items/sitecore/stage</Sitecore>
<Modules>items/modules/stage</Modules>
</Paths>
</Options>
</StageResources>
</Connections>
</Options>
</DefaultConnectionFactory>
</Add>
</Services>
</Web>
</Commands>
</Settings>

IMPORTANT

Schema and ItemRevision Command Services must be configured with the
same settings. Change the <web> node to <Schema> and <ItemRevision>

accordingly.

3. Add the new publishing target to the StoreFactory configuration section.

<?xml version="1.0" encoding="UTF-8"7?>
<Settings>

<Commands>

<Web>

© Copyright 2022, Sitecore® - all rights reserved.

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

<Services>
<Add>
<StoreFactory>
<Options>
<Stores>
<Targets>
<Stage>
<Type>Sitecore.Framework.Publishing.Data.TargetStore,
Sitecore.Framework.Publishing.Data</Type>
<ConnectionNames>
<stageDatabase>Stage</stageDatabase>
<stageResources>StageResources</stageResources>
</ConnectionNames>
<FeaturesListName>TargetStoreFeatures</FeaturesListName>
<Id> GUID FROM SITECORE </Id>
<ScDatabase>stage</ScDatabase>
</Stage>
</Targets>
</Stores>
</Options>
</StoreFactory>
</Add>
</Services>
</Web>
</Commands>
</Settings>

The 1d element in the configuration file must be the same as the Sitecore GUID of the
publishing target in Sitecore.

The scbhatabase element in the configuration file must be the same as the name of the
publishing target item in Sitecore.

IMPORTANT

Schema and ItemRevision Command Services must be configured with the
same settings. Change the <web> node to <Schema> and <ItemRevision>
accordingly. In configuration of the TargetStore, it is important the database
connection name goes first before the resource files one. Since the
configuration factory can reorder elements based on their names, please make
sure elements in the <ConnectionNames> section have names which would
preserve the positional order.

4. Add a patch file to the Sitecore instance (10.2 and higher) that edits the resourcesFiles
setting in:
App Config\Modules\PublishingService\Sitecore.Publishing.Service.Config

<resourceFiles>
<locations type="Sitecore.Publishing.Service.ResourceFiles.ResourceFilesLocations,
Sitecore.Publishing.Service" singleInstance="true">
<targets hint="list:AddTargetLocation">
<stage>$ (dataFolder) /items/stage</stage>
<modules.stage>/sitecore modules/items/stage</modules.stage>
</targets>
</locations>
</resourceFiles>

© Copyright 2022, Sitecore® - all rights reserved. 23

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

5. Copy the item resource files from the CM Sitecore instance (10.1 and higher). Copy dat-files for
the Stage database preserving the folder structure. For example:
from
C:\inetpub\wwwroot\sitecore\App Datalitems\stage
to
C:\inetpub\wwwroot\sitecorepublishing\items\sitecore\stage
and
C:\inetpub\wwwroot\sitecore\sitecore modules\items\stage
to
C:\inetpub\wwwroot\sitecorepublishing\items\modules\stage

4.2. Configuration sources

When the Publishing Service starts up it will attempt to load configuration values from various
locations:

+ Configuration files on disk
+ Configuration contained within environment variables set on the local machine

+ Configuration passed in via command line arguments

Configuration values are loaded in strict order of precedence: File, Environment Variable, Command
Line.

Configuration values set by a file on disk can be overridden by the same configuration values set as
environment variables which, in turn, can be overridden by the same configuration values passed in
via the command line.

NOTE

If you apply any changes to any configuration files, you must restart the application for
the changes to be re-loaded.

4.2.1. Configuration stored on disk
There are three locations where configuration files are loaded from:

* <installationPath>\sitecore\Sitecore.Framework.Plugin.Publishing\config\
This is where the default configuration for the Publishing Service is located. These files should be
considered read-only, and any changes should be made by creating your own configuration file
in the user area as these files may be overridden during an upgrade.

* <installationPath>\sitecoreruntime\ shared\config
You can store user configuration files in the sitecoreruntime folder. These normally involve
overriding or patching values found in the default configuration area listed above. The
configuration written to the shared location will be loaded by all environments.

* <installationPath>\sitecoreruntime\<environment>\config

The environment specific contains configuration for a single environment. Configuration stored
here will override all previously loaded configuration.

© Copyright 2022, Sitecore® - all rights reserved. 24

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

IMPORTANT

Do not modify the default files in the default config folder. These files are
automatically overwritten during the upgrade process. Instead, create your own
configuration files in an environment specific folder under sitecoreruntime,
using the configuration patching mechanisms described in this section to make
the changes you require.

Runtime Environments

Configuration files on disk are collected into what is known as Environments. Environments are simple
directories that contain a collection of configuration files that are loaded at runtime from within the
sitecoreruntime directory.

When the Publishing Service starts up it will try and load files it finds in a single environment folder.

If an environment is not supplied, the Publishing Service will use Production

as its default environment and try and load configuration from the Production

folder (<installationPath>\sitecoreruntime\production\config) You can specify which
environment is used by passing the environment name through the --environment command line
parameter.

4.2.2. Configuration through environment variables

Configuration values can be set as environment variables on the local machine if required. This is
useful for having machine-specific values that are stored in memory and not stored on disk (in case of
security). These values will potentially overwrite the same values defined in configuration files.

4.2.3. Configuration through command line arguments

Configuration values can be passed in via the command line. These values will overwrite the same
values defined on configuration files or in environment variables.

4.3. Configuration tasks

This section describes how to configure logging, how to set the connection strings, and how to
override a service.

4.3.1. Configure logging

The Publishing Service runs on top of a Sitecore Host. Due to this, the

configuration of logging is contained within a separate file called: sitecorehost.xml.

The default location of the sitecorehost.xml is in the root of the installation

folder. This file should be considered read-only and any overrides should

be placed in an environment-specific version of the sitecorehost.xml file:
<installationPath>\sitecoreruntime\<environment>\sitecorehost.xml For example, to
set the Serilog default logging level to Information in the production environment:

+ Create a “production” folder in the <installationPath>\sitecoreruntime folder.

* Create a sitecorehost.xml in the new production folder.

© Copyright 2022, Sitecore® - all rights reserved. 25

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

+ Setthe <Sitecore><Logging><Serilog><MinimumLevel><Default>
element value to Information in the
<installationPath>\sitecoreruntime\production\sitecorehost.xml file:

<Sitecore>
<Logging>
<Serilog>
<MinimumLevel>
<Default>Information</Default>
</MinimumLevel>
</Serilog>
</Logging>
</Sitecore>

4.3.2. Set the connection strings

The connections for the Sitecore databases must be provided by the user when installing the
Publishing Service. There are two methods to set the connection strings for an environment:

+ Usethe configuration setconnectionstring command.

+ Editthe <Settings><Publishing><ConnectionString> elementin the
<installationPath>\sitecoreruntime <environment>\config\sc.publishing.xml

file.

4.3.3. Override or add a service

You configure the Sitecore Publishing Service by registering object types per command,

so that the service can replace default implementations with custom alternatives. To

add a new service or replace an existing service registered with a command, create a

command specific configuration file within the \sitecoreruntime\<environment>\config
folder. Include the command name in the configuration file name. For example,

to change the services registered for the schema command in the development

environment, create a file named sc.publishing.schema.command.services.xml in the
\sitecoreruntime\development\config folder using the structure in the sample below, then add
and/or replace the services available to the command:

<Settings>
<Commands>
<Schema>
<Services>
<Add>
<Type>MyCustom.Service, MyCustom</Type>
<As>MyCustom.IService, MyCustom.Abstractions</As>
</Add>
<Replace>
<Type>MyCustom.Service, MyCustom</Type>
<As>Sitecore.Namespace.ExistingInterface, Sitecore.Namespace</As>
</Replace>
</Services>
</Schema>
</Commands>
</Settings>

4.3.4. Set options on a service

Many of the service types that are registered with a command support an optional configuration
section called Options. When an object type supports Options, you can provide additional configuration
values to change the behavior of the application.

© Copyright 2022, Sitecore® - all rights reserved. 26

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

To override a default option value for a service registered for a command, you must patch the service
registration through configuration. For example, if the default configuration contains an element
called:

<Settings><Command><Web><Services><Add><TreePublishHandler>

<Settings>
<Commands>
<Web>
<Services>
<Add>
<TreePublishHandler>
<Type>Sitecore.Framework.Publishing.PublishJobQueue.Handlers.TreePublishHandler,
Sitecore.Framework.Publishing</Type>
<As>Sitecore.Framework.Publishing.PublishJobQueue.IPublishJobHandler,
Sitecore.Framework.Publishing.Service.Abstractions</As>
<Options>
<ContentAvailability>False</ContentAvailability>

Then, you can set the content availability to true
when running in Development, by saving the following:
<installationPath>\sitecoreruntime\development\config\contentavailability.xml

<Settings>
<Commands>
<Web>

<Services>
<Add>

<TreePublishHandler>
<Options>

<ContentAvailability>True</ContentAvailability>

Now, when the Publishing Service starts in a development environment, content availability will be
enabled.

4.3.5. Configuration file naming

When you create a configuration file, it must be an . xm1 file in order to be loaded. All other files
are ignored. For publishing related configuration files, we recommend prefixing the file names with
sc.publishing. For example: sc.publishing.overrides.xml

4.3.6. Reference configuration values

If you have a configuration value that needs to be referenced elsewhere, you can reference it using
the syntax:

* ${ a:b:c }

This enables you to overwrite the value in a single location, and at the same time the configuration
supports its use in multiple configuration files.

For example, the default configuration file contains a connection string entry for the service that is
configured to point to the Master connection string by default.

If you add a configuration file that contains a value for
Settings:Publishing:ConnectionStrings:Master, the connection string is then used for both
the Master database and the Service database.

© Copyright 2022, Sitecore® - all rights reserved. 27

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

<Settings>
<Publishing>
<ConnectionStrings>
<!-- The Service connection is registered to map to the same connection string as the
master database by default. -->

<Service>${Publishing:ConnectionStrings:Master}</Service>
</ConnectionStrings>
</Publishing>
</Settings>

Alternatively, the value at <settings><Publishing><ConnectionStrings><Service> could be
overwritten in another configuration file that provides an explicit connection string that should be
used.

4.4. Database configuration

Database configuration details can be seen in the sc.publishing.xml configuration file.

For SQL database connections, the user defined in the connection string must have the following
permissions:

* Delete
+ Execute
* Insert
+ Select

+ Update

NOTE

In addition, for executing the schema commands, the user must also have the Alter
permission.

4.4.1. Connection strings
The connection strings are configured under <Settings><Publishing><ConnectionStrings>

Sitecore expects three default connection strings to be configured - core, web, and master, and
these are referenced elsewhere in the configuration.

<Settings>
<Publishing>
<ConnectionStrings>

<Master>Data Source=.\\SQLSERVER17;Initial
Catalog=511108sc823 master;Integrated Security=False;User
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1</
Master>

<Web>Data Source=.\\SQLSERVER17;Initial
Catalog=511108sc823 web;Integrated Security=False;User
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1</Web>

<Core>Data Source=.\\SQLSERVER17;Initial
Catalog=511108sc823 core;Integrated Security=False;User
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15;ConnectRetryInterval=1</

© Copyright 2022, Sitecore® - all rights reserved. 28

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

Core>
</ConnectionStrings>
</Publishing>
</Settings>

Currently, SQL connection strings require that they support Multiple Active Result Sets (MARS), so
when configuring a connection string, you must set MultipleActiveResultSets to true.

Use the following format or similar for connection strings:

Data Source=.\\SQLSERVER17;Initial Catalog=511108sc823 core;Integrated Security=False;User
ID=***;Password=***;MultipleActiveResultSets=True;ConnectRetryCount=15; ConnectRetryInterval=1

For more information, see https://www.connectionstrings.com/sglconnection/.

4.4.2. DefaultConnectionFactory

In the DefaultConnectionFactory configuration, the connections are defined. Each connection
defines its type, configuration options, and name.

The following example defines a connection called Internet that uses the web connection string:

<DefaultConnectionFactory>
<As>Sitecore.Framework.Publishing.Data.IConnectionFactory,
Sitecore.Framework.Publishing.Service.Abstractions</As>
<Type>Sitecore.Framework.Publishing.Data.DefaultConnectionFactory,
Sitecore.Framework.Publishing.Data</Type>
<Options>
<Connections>
<Internet>
<!-- Should match the name of the publishing target configured in SC. -->
<Type>Sitecore.Framework.Publishing.Data.AdoNet.SglDatabaseConnection,
Sitecore.Framework.Publishing.Data</Type>
<LifeTime>Transient</LifeTime>
<Options>
<ConnectionString>Web</ConnectionString>
<DefaultCommandTimeout>120</DefaultCommandTimeout>
<Behaviours>
<backend>sqgl-backend-default</backend>
<api>sqgl-api-default</api>
</Behaviours>
</Options>
</Internet>
</Connections>
</Options>
</DefaultConnectionFactory>

The following connections are configured by default:

Connections Type Points to

Links SQL Core connection string
Service SQL Service connection string
Master SQL Master connection string
Internet SQL Web connection string

4.4.3. StoreFactory

The storeFactory configuration configures stores in the application that bind one or more
connections to a collection of features.

© Copyright 2022, Sitecore® - all rights reserved. 29

https://www.connectionstrings.com/sqlconnection/

Sitecore Publishing Service Installation and Configuration Guide s I T E co R E '

The configuration of Stores is divided into the following sections:

Store Type Connections Details
Service Service The store containing service data.
Sources Master The store(s) for source data. Each source can register multiple

connections.

Targets Internet The store(s) for target data. Each entry is a possible publish target.
ItemsRelationship Links The store for relationship information.
Custom User defined Optional custom data stores can be configured.

The following example defines the sources and Targets sections:

<StoreFactory>
<As>Sitecore.Framework.Publishing.Data.IStoreFactory,
Sitecore.Framework.Publishing.Service.Abstractions</As>
<Type>Sitecore.Framework.Publishing.Data.DefaultStoreFactory,
Sitecore.Framework.Publishing.Data</Type>
<Options>
<Stores>
<Sources>
<Master>
<Type>Sitecore.Framework.Publishing.Data.SourceStore,
Sitecore.Framework.Publishing.Data</Type>
<ConnectionNames>
<master>Master</master>
<resources>MasterResources</resources>
</ConnectionNames>
<FeaturesListName>SourceStoreFeatures</FeaturesListName>

<!-- The name of the Database entity in Sitecore. -->
<ScDatabase>master</ScDatabase>
</Master>
</Sources>
<Targets>
<!--Additional targets can be configured here-->
<Internet>

<Type>Sitecore.Framework.Publishing.Data.TargetStore,
Sitecore.Framework.Publishing.Data</Type>
<ConnectionNames>
<internet>Internet</internet>
<resources>WebResources</resources>
</ConnectionNames>
<FeaturesListName>TargetStoreFeatures</FeaturesListName>
<!-- The id of the target item definition in Sitecore. -->
<Id>8E080626-DDC3-4EF4-A1D1-FOBE4A200254</Id>
<!-- The name of the Database entity in Sitecore. -->
<ScDatabase>web</ScDatabase>
</Internet>
</Targets>
</Stores>
</Options>
</StoreFactory>

NOTE

The Sources and Targets must set the ScDatabase property. Targets must also set the
Id property.

© Copyright 2022, Sitecore® - all rights reserved. 30

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

4.4.4. StoreFeaturelists

The storeFeatureLists configuration specifies the list of features that are available on a specific
store.

In the following example, the features that are available to the source store are several repositories.
A store feature list is linked back to a store through its name that is stored in the FeaturelListName
element.

<StoreFeaturesLists>

<Options>
<FeatureLists>
<!--Source Store Features-->

<SourceStoreFeatures>
<ItemReadRepositoryFeature>
<Type>Sitecore.Framework.Publishing.Data.CompositeltemReadRepository,
Sitecore.Framework.Publishing.Data</Type>
</ItemReadRepositoryFeature>
<TestableContentRepositoryFeature>
<Type>Sitecore.Framework.Publishing.Data.CompositeTestableContentRepository,
Sitecore.Framework.Publishing.Data</Type>
</TestableContentRepositoryFeature>
<WorkflowStateRepositoryFeature>
<Type>Sitecore.Framework.Publishing.Data.CompositeWorkflowStateRepository,
Sitecore.Framework.Publishing.Data</Type>
</WorkflowStateRepositoryFeature>
<EventQueueRepositoryFeature>
<Type>Sitecore.Framework.Publishing.Data.CompositeEventQueueRepository,
Sitecore.Framework.Publishing.Data</Type>
<options>
<ConnectionName>master</ConnectionName>
</options>
</EventQueueRepositoryFeature>
</SourceStoreFeatures>
</Featurelists>
</Options>
</StoreFeaturesLists>

4.4.5. Custom data providers

To support multiple providers of data for a source store, you can add custom data providers to the
system.

To add custom data providers to the system:

1. Create a class that implements the IIndexableItemReadRepository interface. The
following three methods are contained with the type:

* GetItemNodeDescriptors - this method must be implemented to return all the items
contained within the custom data provider.
The IItemNodeDescriptor interface only contains a small number of properties to
represent each item.

* GetItemNodes - this method returns IEnumerable<IItemNode> when a list of item
Guids is supplied.
The I1temNode represents an item including its field data.

* GetVariants - this method returns IEnumerable<litemVariant> when supplied with a
list of IDataLocators.
The llitemVarient represents an item variant (language and version) and its corresponding
fields.

© Copyright 2022, Sitecore® - all rights reserved. 31

Sitecore Publishing Service Installation and Configuration Guide @ s I T E co R E '

2. Create a connection class. You can inherit from IConnection, or use an existing type (for
example, SQLDatabaseConnection).

3. Create a repository builder by implementing
DefaultRepositoryBuilder<IItemReadRepository, TRepo, TConnection>, where:

* TRepo is what you entered in step 1

* TConnection is what you entered in step 2.

4. Update the configuration:

<Settings>
<Commands>
<Web>
<Services>
<Add>
<!-- Register the custom repository builder -->
<MyCustomItemReadRepositoryBuilder>
<Type>My.Custom.ItemReadRepositoryBuilder, My.Custom</Type>

<As>Sitecore.Framework.Publishing.Repository.IRepositoryBuilder 1[[Sitecore.Framework.Publi

shing.Item.IIndexableItemReadRepository,

Sitecore.Framework.Publishing.Service.Abstractions]],

Sitecore.Framework.Publishing.Service.Abstractions</As>
</MyCustomItemReadRepositoryBuilder>

<DefaultConnectionFactory>
<Options>
<Connections>
<!-- Register the custom connection -->
<Custom>
<Type>My.Custom.FileSystemProvider.FileSystemConnection, My.Custom</Type>
<Lifetime>Transient</Lifetime>
<Options>
<IdTablePrefix>pubExample</IdTablePrefix>
<IdTableConnection>Master</IdTableConnection>
<RootFolder>C:\sitecoredata\Data\CustomItems</RootFolder>
</Options>
</Custom>
</Connections>
</Options>
</DefaultConnectionFactory>
<StoreFactory>
<Options>
<Stores>
<Sources>
<Master>
<!-- add the connection to the master source -->
<ConnectionNames>
<custom>Custom</custom>
</ConnectionNames>
</Master>
</Sources>
</Stores>
</Options>
</StoreFactory>
</Add>
</Services>
</Web>
</Commands>
</Settings>

© Copyright 2022, Sitecore® - all rights reserved. 32

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

NOTE

Currently, the publishing service supports reading from a custom data provider, for
example, reading from a customized source and then publishing that data as Sitecore
items to the target database.

4.5. Schema configuration

During startup, the Sitecore Publishing Service checks whether the latest version of the schema is
installed. If the schema needs to be updated, the service shuts down.

You can use the schema command to update and install schemas in the registered connections.

A schema is defined as a DLL that contains a set of resources for preparing a connection for its role

in the service. The resources are organized into versions to support incremental schema upgrade and
downgrade. This means that, in the example of an SQL schema, the DLL contains multiple scripts for
dropping and recreating tables, stored procedures, and other requirements for accessing SQL data.

Schemas can be split, based on their feature set and/or their connection type and they are configured
under:

<Settings><Commands><Web><Services><Schemalnstaller><Options>
and
<Settings><Commands><Schema><Services><Schemalnstaller><Options>

The following code sample is the default schema configuration that defines the suite of schemas that
are installed by the schema update tool:

<Settings>
<Commands>
<Web>
<Services>
<Add>
<SchemaInstaller>
<Options>
<l--
The DeploymentMap defines which schemas are loaded into which connection
-=>
<DeploymentMap>
<Custom>
<Links>
<Common>Common</Common>
<Data-Common>Data-Common</Data-Common>
<Data-Links>Data-Links</Data-Links>
</Links>
</Custom>
<Service>
<Common>Common</Common>
<Service>Service</Service>
</Service>
<Source>
<Common>Common</Common>
<Data-Common>Data-Common</Data-Common>

© Copyright 2022, Sitecore® - all rights reserved. 33

Sitecore Publishing Service Installation and Configuration Guide

<Data-Source>Data-Source</Data-Source>
</Source>
<Target>
<Common>Common</Common>
<Data-Common>Data-Common</Data-Common>
<Data-Target>Data-Target</Data-Target>
</Target>
</DeploymentMap>
&l==

The schemas bind names from the DeploymentMap to a Type/Assembly containing sqgl

schemas to be loaded
-—>
<Schemas>

<Common>Sitecore.Framework.Publishing.Common.Sgl.Schema,

Sitecore.Framework.Publishing.Common.Sqgl.Schema</Common>

<Data-Common>Sitecore.Framework.Publishing.Data.Common.Sqgl.Schema,
Sitecore.Framework.Publishing.Data.Common.Sqgl.Schema</Data-Common>
<Data-Links>Sitecore.Framework.Publishing.Data.Links.Sqgl.Schema,
Sitecore.Framework.Publishing.Data.Links.Sqgl.Schema</Data-Links>
<Data-Source>Sitecore.Framework.Publishing.Data.Source.Sgl.Schema,
Sitecore.Framework.Publishing.Data.Source.Sqgl.Schema</Data-Source>
<Data-Target>Sitecore.Framework.Publishing.Data.Target.Sqgl.Schema,
Sitecore.Framework.Publishing.Data.Target.Sqgl.Schema</Data-Target>
<Service>Sitecore.Framework.Publishing.Service.Sqgl.Schema,

Sitecore.Framework.Publishing.Service.Sgl.Schema</Service>
</Schemas>
</Options>
</SchemaInstaller>

</Add>

</Services>

</Web>

</Commands>

</Settings>

4.5.1. The Deployment Map

The DeploymentMap section maps the schemas to connection types.

@ SITECORE

The following code sample binds the Common, Data-Common, and Data-Links schemas that must be

installed on the custom Links connection. The Common and Service schemas are installed on the

Service connection.

<DeploymentMap>
<Custom>
<Links>
<Common>Common</Common>
<Data-Common>Data-Common</Data-Common>
<Data-Links>Data-Links</Data-Links>
</Links>
</Custom>
<Service>
<Common>Common</Common>
<Service>Service</Service>
</Service>

4.5.2. Schemas

The schemas section names all the schemas that are installed.

© Copyright 2022, Sitecore® - all rights reserved.

34

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

Each configuration value should point to a type in an assembly where the schemas can be discovered.
The following code sample names the Sitecore.Framework.Publishing.Common.Sqgl.Schema assembly
as Common and the sitecore.Framework.Publishing.Data.Common.Sql.Schema assembly as

Data-Common:

<Schemas>
<Common>Sitecore.Framework.Publishing.Common.Sqgl.Schema,
Sitecore.Framework.Publishing.Common.Sqgl.Schema</Common>
<Data-Common>Sitecore.Framework.Publishing.Data.Common.Sgl.Schema,
Sitecore.Framework.Publishing.Data.Common.Sql.Schema</Data-Common>

4.5.3. Validating schemas

When the publishing service starts, it checks whether the latest schema is installed. The version of the
installed schemas retrieved from the PublishingSchema table is compared to the schema version in
the resource file. If a schema upgrade is needed, the service will shut down and log an error message
telling you to upgrade the schema.

1 v nment type

] Log Level Filter

] Log Level Filter

] Listening on

] Instance name

110] - Looking for data schema wversion : 2. Found:
] Unable to start servi

rersion installed. Upgrade from version @ to 2
Please run the 'Sitecore.Framework.Publishing.Host.exe schema upgrade’ command to up e
re.Framework.Publishing.PublishingExtensions.EnsurelLatestSchemaInstalled(IApplicationBuilder builder, ILogger logger) in C:

Sitecore.Framework.Publishing.Host.Startup.Configure(IApplicationBuilder app, IlLogger 1 logger, IApplicationLifetime applifetime,
Publishing.Host\Startup.cs:1line 26
ing down
1 vice is shutting down..
C to shut down.

4.6. Task scheduling

The task scheduler is a service that manages the creation of tasks at start up as well as enabling the
addition and execution of tasks at runtime.

4.6.1. Configure tasks

The Publishing Service enables you to configure independent tasks in the system. It contains four task
definitions by default:

* PublishTask - the task that handles requests to publish items from sources to targets.

* PublishJobCleanUpTask - the task that handles the periodic clean-up of historical publishing
jobs.

* PublishOperationCleanUpTask - the task that removes publishing operations that have been
processed.

© Copyright 2022, Sitecore® - all rights reserved. 35

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

* PublishOperationAgeBasedCleanUpTask - the task that handles periodic clean-up of
historical publishing operations.

To update the task configurations:

1. Navigate to the
<installationPath>\sitecore\Sitecore.Framework.Plugin.Publishing\config\

folder.

NOTE

Do not edit files directly in this folder. Instead, create a patch file.

2. To create a patch file for task configuration, copy the
sc.publishing.web.command.services.xml file to one of the following folders:

* <installationPath>\sitecoreruntime\ shared\config

* <installationPath>\sitecoreruntime\<environment>\config

3. Open the patch file for editing. In the Scheduler node, update the task definitions. Save the
file.

Publishing Service task definitions
By default, the Publishing Service includes four task definitions you can configure. This topic explains
the triggers and options for these tasks.

PublishTask
The PublishTask task definition is configured with two triggers:

* Interval -theinterval trigger runs every few seconds to check for publishing jobs that were
requested while the previous publishing job was running.

* Event - the event-based trigger causes a publishing job to start immediately after it is
requested. If a publishing job is already being processed, the job is delayed until the next
interval.

PublishjobCleanUpTask

The PublishJobCleanUpTask task definition removes old publishing jobs from the database to
prevent the buildup of data over time. It has a single trigger raising on an infrequent schedule to
remove jobs over a week old.

You can configure the task by changing its options:

+ JobAge - the time that must have passed since a publishing job's Stopped time. The default
value is 7 days. If a publishing job’s Stopped time is older than the JobAge, it is eligible for
clean-up.

* BatchSize - this is the number of items in the batch that can be deleted together. The default
value is 50.

PublishOperationCleanUpTask
The PublishOperationCleanUpTask task definition removes any publishing operations that have
been processed and are no longer required.

You can configure the task by changing this option:

© Copyright 2022, Sitecore® - all rights reserved. 36

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

* Interval - the interval trigger determines how often Sitecore runs this task. The default value
is 1 day.

PublishOperationAgeBasedCleanUpTask
The PublishOperationAgeBasedCleanUpTask task definition removes old publishing operations.

You can configure the task by changing its options:

* PublisherOperationAge - the task removes any publishing operations older than the value
specified here. The default value is 30 days.

* Interval - the interval trigger determines how often the task runs. The default value is 1 day.

4.6.2. Defining a task

When you have implemented a task, it must be added to the configuration so that it can be created at
startup:

<Settings>
<Commands>
<Web>
<Services>
<Add>
<Scheduler>
<Options>
<Tasks>
<CustomTask>
<TaskDefinition Type="Custom.Task, Custom" BindOptions="property">
<Options>
<Id>Custom Task</Id>
<Categories>
<Custom>Custom</Custom>
<Other>Other</Other>
</Categories>
</Options>
</TaskDefinition>
</CustomTask>
</Tasks>
</Options>
</Scheduler>
</Add>
</Services>
</Web>
</Commands>
</Settings>

A task can expose additional parameters, such as ID and Categories, to help identify the task when
the system is running.

4.6.3. Defining a trigger

A task cannot run if there are no triggers associated with it. Each trigger is a unique instance, so you
can register multiple triggers of the same type. For example, two interval triggers could be registered
that trigger a task at different polling intervals:

<Settings>
<Commands>
<Web>
<Services>
<Add>
<Scheduler>
<Options>

© Copyright 2022, Sitecore® - all rights reserved. 37

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

<Tasks>
<CustomTask>
<TaskDefinition Type="Custom.Task, Custom" BindOptions="property">
<Options>
<Id>Custom Task</Id>
<Categories>
<Custom>Custom</Custom>
<Other>Other</Other>
</Categories>
</Options>
</TaskDefinition>
<TriggerDefinitions>
<Intervall
Type="Sitecore.Framework.Scheduling.Triggers.IntervalTriggerDefinition,
Sitecore.Framework.Scheduling” BindOptions="property">
<Options Interval="00:10:00" /> <!-- Raise every ten minutes -->
</Intervall>
<Interval2
Type="Sitecore.Framework.Scheduling.Triggers.IntervalTriggerDefinition,
Sitecore.Framework.Scheduling" BindOptions="property">
<Options Interval="00:00:10" /> <!-- Raise every ten seconds -->
</Interval2>
</TriggerDefinitions>
</CustomTask>
</Tasks>
</Options>
</Scheduler>
</Add>
</Services>
</Web>
</Commands>
</Settings>

4.7. Content availability

The content availability feature ensures that the valid version of an item is always available in the
target database at the time of publishing. In this way, you do not have to perform a publishing
operation every time an item version expires, and the next version should be displayed.

You must enable content availability on the Content Delivery (CD) server and on the Content
Management (CM) server.

NOTE

Content availability is not compatible with content testing for experience optimization.
If you want to use content testing, you must first disable content availability.

When you enable content availability and publish an item, the currently valid item version and all
the versions that are valid for future publishing are moved from the source database to the target
database. A new pipeline that is enabled in the content availability configuration file automatically
clears the Sitecore item cache when an item version expires and then, when a contact accesses the
item, the next valid version is displayed.

© Copyright 2022, Sitecore® - all rights reserved. 38

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

IMPORTANT

If you are using HTML caching on a rendering, the Sitecore item cache does not
automatically clear. In addition, if you use a data source inside a rendering, and if
the data source item switches to display a new version, the hosting rendering is not
updated because there is nothing that indicates that an update of a dependent data
source has been triggered.

4.7.1. Configure content availability on the CD server and on the CM server

You must enable content availability on the Content Delivery (CD) server and on the Content
Management (CM) server.

To configure content availability on the CD server and on the CM server:

1.
2.

4.

Place the Sitecore.Publishing.Service.Delivery.dll in the bin directory of the server.

Copy the Sitecore.Publishing.Service.ContentAvailability.config file tothe
server and enable it.

If you use Solr for content search, enable the
Sitecore.Publishing.Service.ContentAvailability.solr.configfile.

Restart your instance.

When an item is indexed the computed fields below stores the valid inception and expiry dates for
each version. When a query is issued to content search then the isAvailable flagis checked to
ensure the hiding and display of the valid versions in a search context that matches the behavior of
the Item API.

The content availability functionality adds the following fields:

+ Computed fields:

* versionsunrisedate
* versionsunsetdate
* publishablefrom

* publishableto

 Virtual field:

* isAvailable

Publishing service setup
To enable content availability in the Publishing Service:

1.

Copy sitecore\Sitecore.Framework.Plugin.Publishing\config\
sc.publishing.contentavailability.xml.disabled to the
sitecoreruntime\<environment>\config directory of the Publishing Service, then enable
the file by removing the .disabled extension.

Restart the Publishing Service.
With DEBUG logging enabled, ensure that the Content Availability status is set to ON.

© Copyright 2022, Sitecore® - all rights reserved. 39

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

When the content availability is enabled, the:

+ Filter items pipeline enables publication checks on items as they come out of the database.

* GetLingFilter processor and VirtualField amend a publication check to each LINQ query
going out so that non-published data does not show.

IMPORTANT

It is possible to misconfigure an items validity period so that it becomes invalid and
disappears. For example, if you set the PublishFrom field to 02nd January 2017 and

the PublishTo field to 7st January 2017, the item does not have a valid date range that
allows the item to be displayed. In Content Editor, in the Publishing Viewer, you can see
a visual representation of the date range of an item or item version and diagnose these
sorts of errors.

4.8. Transient error tolerance for SQL Azure

If you host any application databases in SQL Azure, Microsoft recommends that you implement a retry
strategy for all the database requests to overcome any transient errors that might occur due to the
nature of a shared cloud infrastructure.

NOTE

For more information about transient errors

in SQL Azure, see: http://social.technet.microsoft.com/wiki/
contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-
handling.aspx#Timeouts_amp_Connection_Management.

The Publishing Service provides an implementation of this retry behavior for ADO.NET database
requests, however, you must explicitly enable the behavior via configuration according to which
databases are hosted on SQL Azure:

* The retry behavior is defined in:
\sitecore\Sitecore.Framework.Plugin.Publishing\config\sc.publishing.sglazur
e.xml.example
Copy the file to the required environment folders under sitecoreruntime, then enable the file by
removing the .example extension.

+ A typical configuration setup is provided with the Publishing Service in:
\sitecore\Sitecore.Framework.Plugin.Publishing\config
\sc.publishing.sglazure.connections.xml.example
Copy the file to the required environment folders under sitecoreruntime, then edit the file
accordingly and enable it by removing the .example extension.

For more information about editing this file, see SQL Azure Configuration. To run these files in an

“azure” environment, copy them to \sitecoreruntime\azure\config. You can move these files into a
different environment folder to achieve a different behavior.

© Copyright 2022, Sitecore® - all rights reserved. 40

http://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx
http://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx
http://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

4.8.1. Connection behaviors

By default, the Publishing Service comes with the concept of connection behaviors that provide
the opportunity for transient errors to be mitigated seamlessly in the application for ADO.NET
connections.

When submitting a request to the database in the Publishing Service with ADO.NET, a connection
behavior is chosen according to the connection used and the context in which the request is made.

The context is a Data Access Context, which is either api or backend, depending on the type of work
that is performed in each part of the system:

+ api - when the data is being processed to serve a request for information from an out-of-
process component (for example, the publishing service API).

* backend - when data is being processed as part of a background operation (for example, a
publishing job).

NOTE

Microsoft recommends that you configure the api and backend contexts differently
with regards to transient error handling.

A connection behavior is essentially a component that can wrap each command sent to the database,
and thereby catch any exceptions that get returned, and repeat the command any number of times if
necessary.

By default, the Publishing Service is configured with a no retry connection behavior for all
connections and contexts, which is essentially a nul1 behavior that does not provide any additional
logic.

4.8.2. Default Configuration

The connection behaviors are configured for the web, schema and itemrevision commands in the
following sections of the configuration:

* \Settings\Commands\Web\Add\Services\DbConnectionBehaviours
* \Settings\Commands\Schema\Add\Services\DbConnectionBehaviours

* \Settings\Commands\ItemRevision\Add\Services\DbConnectionBehaviours

The connection behavior used when a request is made to a database is chosen according to the
current Data Access Context, and the name of the connection behavior configured for the current
connection.

The following sample is an extract from the default configuration for the Service connection, where
you can see that the Service connection is configured to use the sql-backend-default and sql-api-
default behaviors for the api and backend contexts respectively.

<Service>
<Type>Sitecore.Framework.Publishing.Data.AdoNet.SglDatabaseConnection,
Sitecore.Framework.Publishing.Data</Type>
<LifeTime>Transient</LifeTime>
<Options>
<ConnectionString>${Publishing:ConnectionStrings:Service}</ConnectionString>
<DefaultCommandTimeout>120</DefaultCommandTimeout>
<Behaviours>
<backend>sqgl-backend-default</backend>

© Copyright 2022, Sitecore® - all rights reserved. a1

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

<api>sqgl-api-default</api>
</Behaviours>
</Options>
</Service>

The following sample is an extract from the default configuration of the two connection behaviors.
This configuration defines the command time and a retryer (by name) that are used for the
connection behavior.

The retryers section within the sc.publishing.services.xml defines the configuration of the
available retryers.

<DbConnectionBehaviours>
<Options>
<Entries>
<!-- Used for all DatabaseConnections created in backend contexts (typically
publishing jobs). -->
<sqgl-backend-default>
<Type>Sitecore.Framework.Publishing.Data.AdoNet.NoRetryConnectionBehaviour,
Sitecore.Framework.Publishing.Data</Type>
<Options>
<Name>Default Backend No Retry behaviour</Name>
<CommandTimeout>120</CommandTimeout>
<Retryer>NoRetryer</Retryer>
</Options>
</sgl-backend-default>

<!-- Used for all DatabaseConnections created in API contexts. -->
<sgl-api-default>
<Type>Sitecore.Framework.Publishing.Data.AdoNet.NoRetryConnectionBehaviour,
Sitecore.Framework.Publishing.Data</Type>
<Options>
<Name>Default Api No Retry behaviour</Name>
<CommandTimeout>10</CommandTimeout>
<Retryer><NoRetryer/Retryer>
</Options>
</sgl-api-default>

</Entries>
</Options>
</DbConnectionBehaviours>

4.8.3. SQL Azure configuration

The connection behaviors in the Publishing Service are aligned with the

recommendations from Microsoft on mitigating transient errors in SQL Azure.

They are specified in the \sitecore\Sitecore.Framework.Plugin.Publishing\config\
\sc.publishing.sglazure.xml.example file. If you are running the Publishing Service in Azure,
the sc.publishing.sqglazure.xml file should be applied as a configuration patch. For more
information, see Configuration Sources. In this file, the following two connection behaviors are added:

<sgl-backend-azure>
<Type>Sitecore.Framework.Publishing.Data.AdoNet.ConnectionRetryBehaviour,
Sitecore.Framework.Publishing.Data</Type>
<Options>
<Name>SQL Azure Backend Exponential Backoff</Name>
<CommandTimeout>120</CommandTimeout>
<Retryer>DefaultExponentialRetry</Retryer>
</Options>
</sgl-backend-azure>
<sgl-api-azure>

<Type>Sitecore.Framework.Publishing.Data.AdoNet.ConnectionRetryBehaviour,

© Copyright 2022, Sitecore® - all rights reserved. 42

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

Sitecore.Framework.Publishing.Data</Type>
<Options>
<Name>SQL Azure API Fixed Backoff</Name>
<CommandTimeout>10</CommandTimeout>
<Retryer>DefaultFixedIntervalRetry</Retryer>>
</Options>
</sqgl-api-azure>

The two connection behaviors use the Transient Fault Handling Application Block from Microsoft to
perform the retrying, and to identify a failure as being a transient failure.

For more information, see http://topaz.codeplex.com/.

To use these connection behaviors, the ADO.NET connections that

represent databases hosted on SQL Azure must be configured to

use them. Inthe \sitecore\Sitecore.Framework.Plugin.Publishing\config
\sc.publishing.sglazure.connections.xml.example file, you can see an example of how
this configuration should be specified for the web command. It specifies the configuration to set
all connections to use the SQL Azure connection behaviors and must be edited according to the
deployment:

<Settings>
<Commands>
<Web>
<Services>
<Add>
<DefaultConnectionFactory>
<Options>
<Connections>
<Links>
<Options>
<Behaviours>
<backend>sqgl-backend-azure</backend>
<api>sqgl-api-azure</api>
</Behaviours>
</Options>
</Links>
<Service>
<Options>
<Behaviours>
<backend>sqgl-backend-azure</backend>
<api>sqgl-api-azure</api>
</Behaviours>
</Options>
</Service>
<Master>
<Options>
<Behaviours>
<backend>sgl-backend-azure</backend>
<api>sqgl-api-azure</api>
</Behaviours>
</Options>
</Master>
<Internet>
<Options>
<Behaviours>
<backend>sqgl-backend-azure</backend>
<api>sqgl-api-azure</api>
</Behaviours>
</Options>
</Internet>
</Connections>
</Options>

© Copyright 2022, Sitecore® - all rights reserved. 43

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

</DefaultConnectionFactory>
</Add>
</Services>
</Web>
</Commands>
</Settings>

4.9. Reporting field changes

By default, the Publishing Service reports on field changes that occur on a number

of standard fields. The field changes are available in the publishEndResultBatch

pipeline that has a processor with args of Sitecore.PublishEndResultBatchArgs inthe
Sitecore.PublishEndResultBatchArgs processor. The ReportPublishFieldsResolver service
inthe sc.publishing.web.command.services.xml configuration file specifies the fields in which
changes will be reported. You can add additional fields into the ReportPublishFieldResolver
service, for example:

<ReportPublishFieldsResolver>
<options>
<AdditionalInvariantItemFieldsIds>
<fl>Field Guid Here</f1l>
<f2>Field Guid Here</f2>
</AdditionalInvariantItemFieldsIds>
<AdditionallLanguageVariantFieldsIds>
<f1>Field Guid Here</fl>
<f2>Field Guid Here</f2>
</AdditionallanguageVariantFieldsIds>
<AdditionalVariantFieldsIds>
<fl1>Field Guid Here</fl>
<f2>Field Guid Here</f2>
</AdditionalVariantFieldsIds>
</options>
</ReportPublishFieldsResolver>

4.10. Logging configuration

The Microsoft Extensions Logging framework is used throughout the system to emit log messages. For
more information, see: https://github.com/aspnet/Logging.

Serilog is the default logging provider configured in the Host. This comes with a large number of sinks
that can be configured for many use cases. For more information, see: https://github.com/serilog/
serilog/wiki/Provided-Sinks.

NOTE

By default, a single file sink is configured.

The Microsoft Extensions Logging framework is based on the concept of logging levels, which are
defined below in the order of significance:

© Copyright 2022, Sitecore® - all rights reserved. 44

https://github.com/aspnet/Logging
https://github.com/serilog/serilog/wiki/Provided-Sinks
https://github.com/serilog/serilog/wiki/Provided-Sinks

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

+ Trace

+ Debug

* Information
+ Warning

* Error

* Critical

* None

Each component that emits log messages in the system, by convention, does this through a logger
object named with the fully qualified class name of the owning component. Therefore, there are many
named loggers across the system that each emit log messages on any of the above levels.

4.10.1. Log configuration location

You can find the default logging configuration in the sitecorehost.xml file of the publishing service
installation.

You can see an example of a logging override configuration in the sitecorehost.development.xml
file of the publishing service installation.

Both of these files are stored in the root folder of the Publishing Service.

4.10.2. Configuring Logger Levels (Filters)

The level of messages that each named logger is permitted to emit can be specified in the
configuration.

The Filters section in the example below, specifies the minimum logging level for all loggers that
have a name with a matching prefix.

For example, <Sitecore>Information</Sitecore> specifies that only log messages at the
Information level or above will be emitted by loggers created in the Sitecore namespace.

+ To enable logging at other levels throughout the system, add additional entries, for example:
<Sitecore.Framework.Publishing.DataPromotion>Debug>/
Sitecore.Framework.Publishing.DataPromotion>
If no matched filter is found, the Default log level filter is used:

<Sitecore>
<Logging>
<Filters>
<Sitecore>Information</Sitecore>
<Default>Warning</Default>
</Filters>
</Logging>
</Sitecore>

+ To customize the log levels, you override or add additional log filters. The following example
adds a configuration for types in the My.Custom.Code namespace to log at the Debug level. It
also changes loggers in the Sitecore.Framework.Schedeling namespace to log at the Debug
level:

<Sitecore>
<Logging>

© Copyright 2022, Sitecore® - all rights reserved. 45

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

<My .Custom.Code>Debug</My.Custom.Code>
<Sitecore.Framework.Scheduling>Debug</Sitecore.Framework.Scheduling>
</Logging>

</Sitecore>

4.10.3. Configuring Serilog

To configure Serilog the ConfigureLogging element must specify the Serilog configure logging type as
shown below.

The Serilog provider can be configured with many sinks. This configuration is for the default logging
configuration for Serilog:

<Sitecore>
<Logging>
<Configurelogging>Sitecore.Framework.Logging.Serilog.ConfigureSitecoreLogging,
Sitecore.Framework.Logging.Serilog</Configurelogging>
<Serilog>
<WriteTo>
<DefaultLogger>
<Name>RollingFile</Name>
<Args>
<pathFormat>logs\Publishing-{Date}.log</pathFormat>
</Args>
</DefaultLogger>
</WriteTo>
</Serilog>
</Logging>
</Sitecore>
</Sitecore>

4.10.4. Console and File Sinks

Serilog supports many different sinks, each sink type is delivered in its own Nuget package. The
Publishing Service comes with the console and file sinks included. The default configuration above
tells Serilog to put all logs produced by the service into a logs folder stored at the application install
path, and log messages are persisted to a log file called Publishing-<date>log, where <date> is
the current date.

Logs files are treated as rolling files, where logging information is added to the file with the current
date. If the log file does not exist, it is created.

You can add in more sinks with other configuration files or replace the default one. For example:

<Sitecore>

<Logging>
<ConfigurelLogging>Sitecore.Framework.Logging.Serilog.ConfigureSitecorelogging,
Sitecore.Framework.Logging.Serilog</ConfigureLogging>

<Serilog>
<WriteTo>
<DevLogger>
<Name>LiterateConsole</Name>
</DevLogger>
</WriteTo>
</Serilog>

</Logging>
</Sitecore>

For more information on how to provide the arguments to define the parameters for these sinks, see
https://github.com/serilog/serilog-settings-configuration.

© Copyright 2022, Sitecore® - all rights reserved. 46

https://github.com/serilog/serilog-settings-configuration

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

For more information on the console and file logging sinks, see https://github.com/serilog/serilog-
sinks-literate and https://github.com/serilog/serilog-sinks-rollingfile.

4.10.5. Other sinks

Serilog also supports other persistence stores for log messages: https://github.com/serilog/serilog/
wiki/Provided-Sinks

To configure sinks other than Console and Rolling File for the Publishing Service:

1. Copy all the DLLs required by the sink into the Publishing Service Host directory that
contains all the Service DLLs.

2. Specify the DLL name in a using element in the Serilog configuration.

3. Configure the sink in the WriteTo section in the same way as Console and Rolling File.
Here is an example of how the Azure DocumentDB can be used to store log messages:

<Serilog>
<Using>
<DocumentDb>Serilog.Sinks.AzureDocumentDB</DocumentDb>
</Using>
<WriteTo>
<Azurelogger>
<Name>AzureDocumentDB</Name>
<Args>
<endpointUri>..azure document db endpoint..</endpointUri>
<authorizationKey>..authorization key..</authorizationKey>
<timeToLive>3600</timeToLive>
</Args>
</AzurelLogger>
</WriteTo>
<WriteTo>
<DevLogger>
<Name>LiterateConsole</Name>
</DevLogger>
</WriteTo>
</Serilog>

One advantage of persisting logs to a document-based database like the Azure DocumentDB, is that
each log message is persisted as an object, with properties that describe the context in which the log
message was emitted. Log messages can then be queried dynamically.

4.11. Excluding items from automatic deletion from the target
databases

When you publish all items, the Publishing Service deletes any items in the target databases that do
not appear in the source database.

If there are sections of your content tree or items based on a specific template, for example, user
generated content or content added from other sources, that you do not want removed automatically
from the target databases, you can create a configuration file that contains the relevant item IDs of
the sections and templates.

© Copyright 2022, Sitecore® - all rights reserved. 47

https://github.com/serilog/serilog-sinks-literate
https://github.com/serilog/serilog-sinks-literate
https://github.com/serilog/serilog-sinks-rollingfile
https://github.com/serilog/serilog/wiki/Provided-Sinks
https://github.com/serilog/serilog/wiki/Provided-Sinks

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

You create the configuration file using the patching mechanism.

* Under the IgnoreChildrenOfItemIds node, add the item IDs of sections that you want to
keep in the target databases.

* Under the IgnoredTemplateIds node, add the item IDs of the templates that you want to
keep in the target databases. In this way, the items based on the specified templates will not be
removed from the target databases.

For example:

<Settings>
<Commands>
<Web>
<Services>
<Add>
<TreeChangesPublishHandler>
<Options>
<IgnoreChildrenOfItemIds>
<UserGeneratedContent>{b00accaf-ce86-408e-b606-4120356fb8cf}</UserGeneratedContent>
<OtherContentSection>{a9173544-5664-4549-ad02-06d5586cb855}</0OtherContentSection>
</IgnoreChildrenOfItemIds>
<IgnoredTemplateIds>
<UserGeneratedContent>{a9173544-5664-4549-ad02-06d5586cb855}</UserGeneratedContent>
</IgnoredTemplateIds>
</Options>
</TreeChangesPublishHandler>

<TreePublishHandler>
<Options>
<IgnoreChildrenOfItemIds>
<UserGeneratedContent>{b00accaf-ce86-408e-b606-4120356fb8cf}</UserGeneratedContent>
<OtherContentSection>{a9173544-5664-4549-ad02-06d5586cb855}</0OtherContentSection>
</IgnoreChildrenOfItemIds>
<IgnoredTemplateIds>
<UserGeneratedContent>{a9173544-5664-4549-ad02-06d5586cb855}</UserGeneratedContent>
</IgnoredTemplateIds>
</Options>
</TreePublishHandler>
</Add>
</Services>
</Web>
</Commands>
</Settings>

4.12. Configure the Publishing Service to use Application
Insights

The Publishing Service supports integration with Azure Application Insights. Application Insights
provides a lot of information about your instances of the Sitecore Publishing Service. To get the most
out of the data that you are capturing with Application Insights, review the Microsoft Azure Application
Insights documentation.

4.12.1. Prerequisites

To configure the Publishing Service to use Azure Application Insights, you must have a Microsoft Azure
subscription and at least one Application Insights instrumentation key from an active Application
Insights service.

© Copyright 2022, Sitecore® - all rights reserved. 48

https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

To create an Application Insights service, review the Microsoft Azure Application Insights
documentation. When you have a running Application Insights service, you can find the
instrumentation key in the Overview panel.

W Sitecore Publishing Service

'::'1'.__ Search i) Metrics Explorer 52 Analytics G Tirne: range U Hefresh

Edental -~
T Owervew

Arthity log
w Meroes coniol (LA West Europe

Tags

v Diagnose and sobve problems

4.12.2. Configure Publishing Service to use Application Insights

To configure the Publishing Service to use Application Insights, supply the instrumentation key in the
logging section of each environment specific sitecorehost.xml:

<Sitecore>
<Logging>
<ApplicationInsights>
<InstrumentationKey>120c6019-64da-49b9-8a4d-47916c46a46f</InstrumentationKey>
</ApplicationInsights>
</Logging>
</Sitecore>

Because the sitecorehost.xml file at the root of the installation folder should be treated as read-
only. You must supply the instrumentation key separately for all the environments that should use
Application Insights. This allows for having different instrumentation keys for different environments.
For example, if you want to set the instrumentation key for a development environment, then you
can create a sitecorehost.xml file in the sitecoreruntime/development directory of the Publishing
Service and use the new file to set the value for the InstrumentationKey property.

NOTE

The name of the environment folder that you use should match the environment that
is configured for the Publishing Service. For more information, see the section about
Host Configuration Options.

To complete the Application Insights configuration for the Publishing Service, Serilog must also be
configured to send logging information to Application Insights.

4.12.3. Adding Serilog.Sinks.Applicationinsights

The Sitecore Publishing Service uses the Serilog logging framework to generate log information

at runtime. Microsoft Application Insights can also be configured to log information on the Azure
platform. Serilog also provides the ability to communicate with Microsoft Application Insights. By
combining the two, the Publishing Service can publish structured logs to Application Insights, enabling
management of logs within the Azure platform.

When Application Insights is configured, you must configure Serilog to send logging formation to
Application Insights.

To configure Serilog to send logging formation to Application Insights:

© Copyright 2022, Sitecore® - all rights reserved. 49

https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

1. Set the ConfigureLogging element of the logging section to the Serilog Application Insights
configure logging type: Sitecore.Framework.Logging.Serilog.ApplicationInsights.
ConfigureSitecoreloggingTraces,
Sitecore.Framework.Logging.Serilog.ApplicationInsights

2. Add the instrumentation key to the ApplicationInsights section.

<Sitecore>
<Logging>
<Configurelogging>Sitecore.Framework.Logging.Serilog.ApplicationInsights.

ConfigureSitecorelLoggingTraces, Sitecore.Framework.Logging.Serilog.ApplicationInsights</
ConfigurelLogging>

<ApplicationInsights>

<InstrumentationKey>120c6019-45da-56b9-8a4d-47916cd46a46f</InstrumentationKey>
</ApplicationInsights>

</Logging>
</Sitecore>

Perform a few publishes and within a few minutes you'll be able to see the trace entries that
are logged.

57 Search
Las

e granularity) - Publishing
@ Timerange Y Fitters {) Refresh) Reset =2 Analytics (O) Feedback [Help

Search

Fiteredon Trace X PageView X CustomEvent x Exception X Availability x

52 total results between 29/07/2018 15:27 and 30/07/2018 15:27

TRACE
Job Result: 1bdS588a7-28bd-4385-ab78-57¥853571988 - "Complete”™ - "OK”. Duration: ©8:08:80.8325247
Devic PC el: Informational
7/30/2018. 3:21:31 PM - TRACE
Promote completed successfully -> Target : "Internet”, Manifest : f4e46388-3f5f-4591-8aPa-ddbde79821b3.
ice type: PC level: Informational
7/30/2018, 3:21:31 PM - TRACE
t : "Internet”, Manifest : f4e46388-3f5f-4591-8aBa-ddbde79821b3.
el: Informational

4.12.4. Custom configuration of Applicationinsights

When running the Publishing Host as a web service (using the web command) it will always use
the standard Telemetry services and configuration from Asp .Net Core. It is possible to configure
Telemetry Modules and Processors for the other commands by adding these to the Applicationinsights

configuration section in your configuration files. This can be useful in diagnosing issues when running
the commands in Azure.

For example, the following configuration will register the ‘QuickPulse’ telemetry module and processor
with the commands available in the Publishing Host:

<Sitecore>
<Logging>
<ApplicationInsights>

<InstrumentationKey>120c6019-64da-49b9-8a4d-47916c46a46f</InstrumentationKey>
</ApplicationInsights>

<TelemetryModules>

© Copyright 2022, Sitecore® - all rights reserved. 50

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

<Add
Type="Microsoft.ApplicationInsights.Extensibility.PerfCounterCollector.QuickPulse.QuickPulseTelemet
ryModule, Microsoft.AI.PerfCounterCollector” />
</TelemetryModules>

<TelemetryProcessors>
<Add Type="
Microsoft.ApplicationInsights.Extensibility.PerfCounterCollector.QuickPulse.QuickPulseTelemetryProc
essor, Microsoft.AI.PerfCounterCollector” />

</ TelemetryProcessors >

</Logging>
</Sitecore>

This configuration will allow you to view the Live Metrics for a command as it is running.

4.13. Troubleshooting

If you receive an error where the Internet Information Services (IIS) cannot read the application
configuration, ensure you have installed all the prerequisites.

« Ifyoureceive a 502 - Bad Gateway error when you visit your site, check the logs for details.

+ After fixing any errors, restart your application pool and try again.

© Copyright 2022, Sitecore® - all rights reserved. 51

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

5. High Availability Configuration of the Sitecore
Publishing Service

This chapter describes how you can support high availability requirements by deploying multiple
instances of the Publishing Service to use the same database.

 Introduction

+ On premise
* Azure
+ Configuration (Advanced)

+ Supported Deployment Models

5.1. Introduction

When multiple Publishing Service instances are running, all of them can receive web-API calls.
However, only one instance will have the job system active and therefore perform the actual
publishing jobs. If the active instance fails, another instance will become active. This happens
automatically because of a heartbeat protocol that is implemented via the service database.

Each service instance will request ownership of a logical lock, stored in the database, on a given
schedule. Only one instance at a time can own this lock. Ownership is obtained if either there is no
lock existing already, or if the current owner has not renewed the lock within a configured lifetime
threshold. With the default settings, the maximum time taken to failover to a new active instance is 15
seconds, the minimum is 10 seconds.

5.1.1. Workflow

The following steps describe the workflow of when more than one Publishing Service is running
against the same set of databases:

1.

The service instance gets assigned a random unique name at start up, or the name can be
specified explicitly in the configuration. The algorithm for generating the service name can be
replaced by providing another implementation of the IServiceInformation interface.

For more information about assigning a specific name to a server instance, see On premise.

When the service is started, the heartbeat protocol will kick off and the first instance that can
access the publishing ActivationLock table will be set as active to enable the job system.

All the other instances will remain inactive, they will be able to receive API calls, but the
jobs will only run on the active instance. For example, if a job is enqueued using an inactive
instance, the active instance will pick it up within 10 seconds.

If the active instance fails, it will stop renewing the activation lock in the database. After the
lock lifetime has passed, another inactive instance will be able to acquire the lock, and hence
set itself as an active instance. It will then enable its job system to start processing the jobs in
the queue.

© Copyright 2022, Sitecore® - all rights reserved. 52

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

5. Any job that was running when the previously active instance crashed will be automatically
started by the new active instance.

5.2. On premise

In a high-availability environment, multiple instances of the Publishing Service need to be running
behind a load balancer.

No special configuration is needed. However, each instance can be configured with a unique name.
The configuration element is:

<Settings>
<Publishing>
<InstanceName></InstanceName>
</Publishing>
</Settings>

The instance name can be assigned through configuration, an environment variable, or a
command line parameter. The instance name is used in logging and in the Database
Publishing ActivationLock table that shows the current active instance.

5.3. Azure

The Publishing Service can be installed as an Azure Application Service. There is no configuration
needed in order to enable the high-availability functionality.

To install the Publishing Service as an Azure Application Service:

1. Inthe Azure portal, select a tier that allows you to use scaled-out configuration, for example,
Tier B1 where you can have up to three instances.

2. Under Settings, click the Scale out option, and then drag the slider to specify the number of
instances.

© Copyright 2022, Sitecore® - all rights reserved.

53

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

bristol-test - Scale out (App Service plan)

4 Add ESCoumns @ Delete) Refressh = Move

Essentials ~ £ Search (Ctri+l)

Subscription 1D
KHE-NQ & 8d70e5f9-5a7c-4c1b-alc1-425046e02ecs Overview
nnnnnnnn

UK South H Activity log

oM Access control (IAM)

® Tags 1

Filter iter

NAME Tvee LocATION
Dizgnose and solve problems

ehe-bristol-test App Service North Europe
AP DEPLOYMENT

Quickstart

pira
Ave
Deployment credentials 1 3

Deployment siots

instance count that | enter manually v

 Deployment options
pleyment op setup means that the number of instances you choose won't change, even if

there are changes in load!
serTiNGs Instances (]| 3

Application settings

Authentication / Authorization
@ Backups
B8 Custom domains
SSL certificates
©> Networking
4 Scale up (App Service plan)

7 Scale out (App Service plan)

5.4. Configuration (Advanced)

The Publishing Service comes with defaults for the activation strategy. However, there are some
parameters that can be configured if it is found that the active instance is being switched by mistake.

You can configure the following options:

* LockAttemptIntervalInSeconds - specify the interval in seconds that the service should use
to obtain the activation lock.

* LockRenewalIntervalInSeconds - if the service already owns the lock, specify the interval in
seconds that the service should use to renew the activation lock.

* LockLifetimeInSeconds - specify the interval in seconds after which the service should lose
the activation lock if it hasn't renewed it, for example, in the situation where the service is
inactive.

IMPORTANT

Each instance must be configured with the same settings.

5.5. Supported deployment models

The high availability (HA) of the publishing service means that it can be used in the following
configurations:

© Copyright 2022, Sitecore® - all rights reserved. 54

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

* Running on Azure as a scaled-out application service.
* Running multiple instances on multiple computers or VMs.

* Running multiple instances on the same machine. While this is not technically a high-availability
setup, it can benefit testing.

© Copyright 2022, Sitecore® - all rights reserved. 55

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

6. Publishing Service API

Every interaction between the Sitecore Publishing Service module in Sitecore and the Sitecore
Publishing Service is performed with web requests to the Publishing Service web API.

Consumers that want to interact directly with the Publishing Service can also use the Publishing
Service web API.

This chapter contains the following section:

* APl documentation

6.1. APl documentation

Swagger libraries of all the APl endpoints are available for the Publishing Service.

IMPORTANT

If the Publishing Service is running in a development environment, you can access the
Swagger Ul at http://localhost:5000/swagger/index.html

Sitecore Publishing Service APl v1 ®

Maintenance

Manifest

PublisherOperation

v v v v

PublishJobQueue

Schemas >

The main Swagger dashboard describes all the endpoints that the Publishing Service exposes. You can
explore the different APl versions and the endpoints from the dashboard as well as invoke and test
the APl methods.

© Copyright 2022, Sitecore® - all rights reserved. 56

http://localhost:5000/swagger/index.html

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E

Manifest
PublisherOperation
PublishJobQueue

/api/publishing/jobqueue Queues anew publshing job

Parameters

Request body """

application/json N

The PublishOptio

Edit Value | Sche

To generate Swagger specification files (swagger. json) for the Publishing Service APIs, use the
apigen command:

$ Sitecore.Framework.Publishing.Host apigen [target-path]

In this example, [target-path] is the folder where the apigen command saves the specification files.

© Copyright 2022, Sitecore® - all rights reserved. 57

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

7. Upgrade the Publishing Service

You can upgrade to Sitecore Publishing Service 6.0.0 from versions 3.1.x or later.

Before you upgrade to a new version of the Publishing Service, make sure you create a backup of the
existing Publishing Service directory.

To upgrade the Publishing Service:

1.
2.

Ensure that you meet the prerequisites for the Publishing Service.
Extract the content of the Sitecore Publishing Service 6.0.0.zip file to a new directory.

Set the name of the Publishing Service environment in the SITECORE_ENVIRONMENT
environment variable.

NOTE

This step is not required if the environment name is “Production” - the default
environment assumed by the Publishing Host.

Create a new sitecoreruntime folder in the installation folder.
Copy the Sitecore license file to the <installationPath>\sitecoreruntime folder.

Create a directory for your environment under <installationPath>\sitecoreruntime.
The directory name should match the environment name set in the previous step.

Copy item resource files from the CM Sitecore instance (for Sitecore 10.1

and above). Copy dat-files for all databases except the Core preserving the

folder structure. For example, from C:\inetpub\wwwroot\sitecore\App Data\items
to C:\inetpub\wwwroot\sitecorepublishing\items\sitecore and
C:\inetpub\wwwroot\sitecore\sitecore modules\items to
C:\inetpub\wwwroot\sitecorepublishing\items\modules.

Use the Sitecore.Framework.Publishing.Host configuration setconnectionstring
command to reconfigure your connection strings.

Create configuration override files in the
<installationPath>\sitecoreruntime\<environment>\config\ folder for the service
registrations or options that have been overridden in the previous installation. Please refer to
the “Configuration Tasks"” section for more details about overriding services and options.

NOTE

Depending on which Sitecore version you are using, you might want to
consider disabling the multiple link database mode as described in the Sitecore
Publishing Service Module installation guide available on the Sitecore download

page.

10. For the existing Publishing Service instance, stop the IIS application pool and then set the

physical path for the IIS website to be the newly installed (v.6.0.0) Publishing Service directory
path.

© Copyright 2022, Sitecore® - all rights reserved. 58

https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx
https://dev.sitecore.net/Downloads/Sitecore_Publishing_Service_Module.aspx

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

11. Start the IIS application pool again.

7.1. Configure a custom directory with item resource files

You can configure the Sitecore Publishing Service to use a custom folder for the item resource files.

To use a custom folder for the item resource files:

1.

In the Publishing Service, in the
App Config\Modules\PublishingService\Sitecore.Publishing.Service.Config

file, in the the DefaultConnectionFactory section, register the custom folder, for example
sitecore modules/items/custom folder, for each database. The paths should be relative to
the items folder of the Publishing Service, for example:

<?xml version="1.0" encoding="UTF-8"?>

<Settings>
<Commands>
<Web>
<Services>
<Add>
<DefaultConnectionFactory>
<Options>
<Connections>
<MasterResources>
<Options>
<Paths>
<Custom>items/modules/custom/master</Custom>
</Paths>
</Options>
</MasterResources>
<WebResources>
<Options>
<Paths>
<Custom>items/modules/custom/web</Custom>
</Paths>
</Options>
</WebResources>
</Connections>
</Options>
</DefaultConnectionFactory>
</Add>
</Services>
</Web>
</Commands>
</Settings>

NOTE

You must also configure the schema and ItemRevision command services
with the same settings by changing the <web> node to <Schema> and
<ItemRevision>.

2. For the Sitecore XP 10.2 and later, add a patch file that edits the resourceFiles setting in the

App Config\Modules\PublishingService\Sitecore.Publishing.Service.Config
file.

© Copyright 2022, Sitecore® - all rights reserved. 59

Sitecore Publishing Service Installation and Configuration Guide @ s I T E co R E

This configuration registers the custom folders for each database:
<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/" xmlns:role="http://
www.sitecore.net/xmlconfig/role/">
<sitecore role:require="Standalone or ContentManagement'">
<publishing.service>

<resourceFiles>
<locations>
<sources>
<custom.master>/sitecore modules/items/custom/master</custom.master>
</sources>
<targets>
<custom.web>/sitecore modules/items/custom/web</custom.web>
</targets>
</locations>
<pathTranslatorFactory>
<replacements>
<!-- if the item resource files are stored under a new root, it must
be registered here: -->
<!-- replacement root="/custom root/items" replaceWith="custom"
patch:before="replacement [@root="'/']" id="custom" / —-->
</replacements>
</pathTranslatorFactory>
</resourceFiles>
</publishing.service>
</sitecore>
</configuration>

© Copyright 2022, Sitecore® - all rights reserved. 60

Sitecore Publishing Service Installation and Configuration Guide

@ SITECORE

8. Publishing Service support matrix

Starting with Sitecore XP 9.2.0, the Sitecore Publishing Service Module uses the same version number
as the Sitecore Platform and not the Publishing Service. The Publishing Service still uses its own
version numbering.

We recommend updating to the latest version of the Publishing Service and Publishing Service Module
at the earliest opportunity. The support matrix details which versions of the Sitecore Platform are
supported:

Sitecore Platform Publishing Service Module Publishing Service

8.2 Initial Release - 8.2 Update 1

1.1 Initial Release

1.1 Initial Release

8.2 Update-2

2.0 Initial Release

2.0 Initial Release

8.2 Update-2 - 8.2 Update-3

2.0 Update-1

2.0 Update-1

8.2 Update-2 - 8.2 Update-5

2.1 Initial Release

2.1 Initial Release

8.2 Update-2 - 8.2 Update-7

2.2 Initial Release

2.2 Initial Release

8.2 Update-2 - 8.2 Update-7

2.2 Update-1

2.2 Update-1

9.0 Initial Release

3.0 Initial Release

3.0 Initial Release

9.0 Initial Release - 9.0 Update-1

3.1 Initial Release

3.1 Initial Release

9.0 Initial Release - 9.0 Update-2 3.1 Update-1 3.1 Update-1
9.0 Initial Release - 9.0 Update-2 3.1 Update-2 3.1 Update-2
9.0 Initial Release - 9.0 Update-2 3.1 Update-3 3.1 Update-3

9.1 Initial Release

9.1 Initial Release

4.1.0-4.3.0,6.0.0

9.1 Update-1 9.1 Update-1 4.1.0-4.3.0,6.0.0
9.2.0 9.2.0 4.1.0-4.3.0,6.0.0
9.3.0 9.3.0 4.1.0-4.3.0,6.0.0
10.0.0 10.0.0 4.1.0-4.3.0,6.0.0
10.1.0 10.1.0 5.0.0, 6.0.0

10.2.0 10.2.0 6.0.0

© Copyright 2022, Sitecore® - all rights reserved.

61

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

9. Publishing Service Options

This section describes the service options available in the Publishing Service, including default values
and override examples.

9.1. DatabaseConnectionOptions

You can use the DatabaseConnectionOptions class to specify the connection to a data source. The
DatabaseConnectionOptions class is used by the type:

* Sitecore.Framework.Publishing.Data.AdoNet.SglDatabaseConnection

namespace Sitecore.Framework.Publishing.Data.AdoNet
{

public class DatabaseConnectionOptions

{

public string ConnectionString { get; set; }
public int DefaultCommandTimeout { get; set; } = 120;

public Dictionary<string, string> Behaviours { get; set; } = new Dictionary<string,
string> (StringComparer.OrdinalIgnoreCase) ;

}
}

The following example specifies an alternative value for the DefaultCommandTimeout setting of the
Service connection for the Web command:

<Settings>
<Commands>
<Web>
<Services>
<Add>
<DefaultConnectionFactory>
<Options>
<Connections>
<Service>
<Options>
<DefaultCommandTimeout>30</DefaultCommandTimeout>
</Options>
</Service>
</Connections>
</Options>
</DefaultConnectionFactory>
</Add>
</Services>
</Web>
</Commands>
</Settings>

© Copyright 2022, Sitecore® - all rights reserved. 62

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

9.2. PublishjobHandlerOptions

You can use the PublishJobHandlerOptions class to configure various aspects of the Publish Job
handler implementations to optimize performance. The PublishJobHandlerOptions class is used
by the different publish handlers that are available:

* Sitecore.Framework.Publishing.PublishJobQueue.Handlers.IncrementalPublishHa
ndler

* Sitecore.Framework.Publishing.PublishJobQueue.Handlers. TreePublishHandler

* Sitecore.Framework.Publishing.PublishJobQueue.Handlers.
TreeChangesPublishHandler

namespace Sitecore.Framework.Publishing.PublishJobQueue

{
public class PublishJobHandlerOptions

{ public int RelatedItemBatchSize { get; set; } = 2000;
public int ManifestBuilderBatchSize { get; set; } = 5000;
public int UnpublishedOperationsLoadingBatchSize { get; set; } = 2000;
public int DeletedItemsBatchSize { get; set; } = 2000;

public int MediaBatchSize { get; set; } = 2000;

[Obsolete ("Property is not used")]
public int IndexReadBatchSize { get; set; } = 20000;

public int TargetOperationsBatchSize { get; set; } = 2000;
public int SourceTreeReaderBatchSize { get; set; } = 2000;
public bool TransactionalPromote { get; set; } = false;

public bool ParallelPromote { get; set; } = true;

public bool ContentTesting { get; set; } = true;

public bool ContentAvailability { get; set; } = false;

public bool DeleteOrphanedItems { get; set; } = true;

public bool PublishRelatedItemParents { get; set; } = false;
public List<Guid> PublishRelatedItemDescendants { get; } = new List<Guid>():;
public IEnumerable<Guid> IgnoreChildrenOfItemIds { get; set; }
public IEnumerable<Guid> IgnoredTemplatelds { get; set; }

public string DefaultLanguage { get; set; } = "en";

}

The following configuration example specifies an alternative value for the default configuration of the
TreePublishHandler for the web command:

<Settings>
<Commands>

© Copyright 2022, Sitecore® - all rights reserved. 63

Sitecore Publishing Service Installation and Configuration Guide @ S I T E co R E '

<Web>
<Services>
<Add>
<TreePublishHandler>
<Options>
<!--Enable this feature if content testing is required and has been enabled in the
Sitecore platform-->
<ContentTesting>True</ContentTesting>

<!--Specifies the batch size of items that are handled by the ManifestBuilder.
Increasing or decreasing this value will affect performance, depending on the environment. -->
<ManifestBuilderBatchSize>5000</ManifestBuilderBatchSize>

<!--Enables parallel promotion, this allows the promotion of item to multiple targets
in parallel. This will speed up promotion, but consume more resources.-->
<ParallelPromote>False</ParallelPromote>

<!--Specifies the batch size of related items that are handled by the
VariantsRelatedNodesTargetProducer. Increasing or decreasing this value will affect performance,
depending on the environment. -->

<RelatedItemBatchSize>2000</RelatedItemBatchSize>

<!--Specifies the batch size of items that are handled by the TreeNodeSourceProducer.
Increasing or decreasing this value will affect performance, depending on the environment. -->
<SourceTreeReaderBatchSize>2000</SourceTreeReaderBatchSize>

<!--Specifies the batch size of items that are handled by the
VariantsValidationTargetProducer. Increasing or decreasing this value will affect performance,
depending on the environment. -->

<TargetOperationsBatchSize>2000</TargetOperationsBatchSize>

<!--Enables transactional promotion, this performs the publish job as a transaction.
<TransactionalPromote>True</TransactionalPromote>

<!--Specifies the batch size of items that are handled by the
UnpublishedNodeSourceProducer within IncrementalPublishHandler. Increasing or decreasing this
value will affect performance, depending on the environment. -->
<UnpublishedOperationsLoadingBatchSize>2000</UnpublishedOperationsLoadingBatchSize>
</Options>
</TreePublishHandler>
</Add>
</Services>
</Web>
</Commands>
</Settings>

9.3. PromoterOptions

You use the PromoterOptions class to configure various aspects of the Publish Job promoter
implementations to optimize performance. The PromoterOptions class is used by:

* Sitecore.Framework.Publishing.DataPromotion.DefaultItemCloneManifestPromote
r

* Sitecore.Framework.Publishing.DataPromotion.DefaultItemManifestPromoter

* Sitecore.Framework.Publishing.DataPromotionDefaultMediaManifestPromoter

© Copyright 2022, Sitecore® - all rights reserved. 64

Sitecore Publishing Service Installation and Configuration Guide @ s I T E co R E

namespace Sitecore.Framework.Publishing.Abstractions.DataPromotion
{
public class PromoterOptions
{
public int BatchSize { get; set; } = 500;

The following configuration example specifies an alternative BatchsSize class for the registered
ItemCloneManifestPromoter

<Settings>
<Commands>
<Web>
<Services>
<Add>
<ItemCloneManifestPromoter>
<Options>
<BatchSize>1000</BatchSize>
</Options>
</ItemCloneManifestPromoter>
</Add>
</Services>
</Web>
</Commands>
</Settings>

© Copyright 2022, Sitecore® - all rights reserved. 65

	Sitecore Publishing Service Installation and Configuration Guide
	Table of Contents
	1. Introduction
	1.1. About the Publishing Service module
	1.1.1. Publishing Service concepts

	2. Installing the Sitecore Publishing Service
	2.1. Prerequisites
	2.1.1. Sitecore Publishing Service requirements

	2.2. Manual installation
	2.3. Scripted installation
	2.4. Scaled environment considerations

	3. Sitecore Publishing Service commands
	3.1. Introduction
	3.1.1. General execution format
	3.1.2. Logs

	3.2. Web command
	3.2.1. Host configuration options
	3.2.2. Custom configuration values

	3.3. IIS command
	3.3.1. Install options

	3.4. Configuration command
	3.4.1. SetConnectionString command

	3.5. Schema command
	3.5.1. Upgrade
	3.5.2. Downgrade
	3.5.3. Reset
	3.5.4. List

	3.6. ItemRevision command
	3.6.1. List
	3.6.2. Fix

	4. Configuring the Sitecore Publishing Service
	4.1. Publishing targets
	4.2. Configuration sources
	4.2.1. Configuration stored on disk
	4.2.2. Configuration through environment variables
	4.2.3. Configuration through command line arguments

	4.3. Configuration tasks
	4.3.1. Configure logging
	4.3.2. Set the connection strings
	4.3.3. Override or add a service
	4.3.4. Set options on a service
	4.3.5. Configuration file naming
	4.3.6. Reference configuration values

	4.4. Database configuration
	4.4.1. Connection strings
	4.4.2. DefaultConnectionFactory
	4.4.3. StoreFactory
	4.4.4. StoreFeatureLists
	4.4.5. Custom data providers

	4.5. Schema configuration
	4.5.1. The Deployment Map
	4.5.2. Schemas
	4.5.3. Validating schemas

	4.6. Task scheduling
	4.6.1. Configure tasks
	Publishing Service task definitions
	PublishTask
	PublishJobCleanUpTask
	PublishOperationCleanUpTask
	PublishOperationAgeBasedCleanUpTask

	4.6.2. Defining a task
	4.6.3. Defining a trigger

	4.7. Content availability
	4.7.1. Configure content availability on the CD server and on the CM server
	Publishing service setup

	4.8. Transient error tolerance for SQL Azure
	4.8.1. Connection behaviors
	4.8.2. Default Configuration
	4.8.3. SQL Azure configuration

	4.9. Reporting field changes
	4.10. Logging configuration
	4.10.1. Log configuration location
	4.10.2. Configuring Logger Levels (Filters)
	4.10.3. Configuring Serilog
	4.10.4. Console and File Sinks
	4.10.5. Other sinks

	4.11. Excluding items from automatic deletion from the target databases
	4.12. Configure the Publishing Service to use Application Insights
	4.12.1. Prerequisites
	4.12.2. Configure Publishing Service to use Application Insights
	4.12.3. Adding Serilog.Sinks.ApplicationInsights
	4.12.4. Custom configuration of ApplicationInsights

	4.13. Troubleshooting

	5. High Availability Configuration of the Sitecore Publishing Service
	5.1. Introduction
	5.1.1. Workflow

	5.2. On premise
	5.3. Azure
	5.4. Configuration (Advanced)
	5.5. Supported deployment models

	6. Publishing Service API
	6.1. API documentation

	7. Upgrade the Publishing Service
	7.1. Configure a custom directory with item resource files

	8. Publishing Service support matrix
	9. Publishing Service Options
	9.1. DatabaseConnectionOptions
	9.2. PublishJobHandlerOptions
	9.3. PromoterOptions

