
Sitecore Install Framework 2.2.0
Configuration Guide

November 28, 2019
Sitecore Experience Platform 9.3.0

Table of Contents
1. Introduction ... 3

1.1. Getting started .. 3
1.1.1. How to use this guide ... 3

2. Install the Sitecore Install Framework module .. 4
2.1. Install the Sitecore Install Framework Module ... 4

2.1.1. Installation with Microsoft PowerShell .. 4
2.1.2. Manual installation ... 4
2.1.3. Validate the installation .. 5
2.1.4. Import Sitecore Install Framework into a PowerShell session .. 5

2.2. Multiple Versions of Sitecore Install Framework ... 6
2.2.1. Running a specific version of SIF ... 6

3. Customize Sitecore Install Framework .. 7
3.1. Create and customize configurations .. 7

3.1.1. Tasks .. 7
3.1.2. Parameters .. 9
3.1.3. Config functions ... 10
3.1.4. Variables .. 11
3.1.5. Modules ... 11
3.1.6. Uninstall tasks .. 12
3.1.7. Register .. 12
3.1.8. Automatic registration of extensions .. 13
3.1.9. Includes ... 13
3.1.10. Settings .. 15

3.2. Create tasks .. 16
3.2.1. The CmdletBinding Attribute .. 16
3.2.2. Task parameters ... 16
3.2.3. Return values from task ... 17
3.2.4. Write to the logs ... 17
3.2.5. Include tasks in a configuration .. 17

3.3. Create config functions ... 18
3.3.1. Config function parameters .. 18
3.3.2. Include config functions in a configuration ... 19

3.4. Invoking an installation ... 19
3.4.1. Examples ... 20

4. Further guidance and troubleshooting ... 21
4.1. Further usage and help ... 21

4.1.1. Run tasks and config functions directly ... 21
4.1.2. Execution policies ... 22
4.1.3. Get help about Sitecore Install Framework ... 22

4.2. Troubleshooting .. 26
4.2.1. Internal server error ... 26
4.2.2. Error when invoking the Web Deploy task ... 27
4.2.3. Missing modules .. 27
4.2.4. Administrator permissions ... 28
4.2.5. Sitecore installation failed while using Skype .. 28

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 2

1. Introduction

This document describes Sitecore Install Framework (SIF) for Sitecore 9.3.0.

This document contains the following chapters:

• Chapter 1 – Introduction An introduction to the Sitecore Install Framework.

• Chapter 2 – Install the Module Contains information about the steps necessary to install the
Sitecore Install Framework module.

• Chapter 3 – Customize Sitecore Install Framework Contains information about extension
points that allow you to customize SIF for your specific installation needs

• Chapter 4 – Further guidance and troubleshooting Contains information about assistance
and common troubleshooting strategies.

1.1. Getting started
Sitecore Install Framework is a Microsoft® PowerShell module that supports local and remote
installations of Sitecore, and it is fully extensible. You can install the entire Sitecore solution (XP), or the
CMS-only mode (XM) solution.

This guide describes how to configure and customize the installation process of the Sitecore
Experience Platform to suit your own needs.

1.1.1. How to use this guide
This guide describes how to configure your Sitecore installation with SIF, as well as cmdlets and
extensibility points. There is also a chapter on further help and guidance.

This guide is intended to be a supplement all the Sitecore installation guides and to help you
customize your installation. Refer to an installation guide for information about system requirements
and other prerequisites, the general installation process, and the additional configuration tasks that
are necessary after installing Sitecore Experience Platform.

You can download the Sitecore installation guides from the Sitecore Downloads page.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 3

https://dev.sitecore.net

2. Install the Sitecore Install Framework module

This chapter contains information about installing, updating, validating, and importing the Sitecore
Install Framework module.

This chapter contains the following sections:

• Install the Sitecore Install Framework Module

• Multiple Versions of Sitecore Install Framework

2.1. Install the Sitecore Install Framework Module
You can install the SIF module directly through Microsoft PowerShell®, or you can perform a manual
installation by downloading the Sitecore Install Framework module as a ZIP package.

2.1.1. Installation with Microsoft PowerShell
Sitecore Install Framework is made available through the Sitecore Gallery. The Sitecore Gallery is a
public MyGet feed where you can download PowerShell modules created by Sitecore.

To install Sitecore Install Framework with PowerShell:

1. To add the repository, in Windows, openMicrosoft PowerShell® as an administrator and run
the following cmdlet: Register-PSRepository -Name SitecoreGallery -
SourceLocation https://sitecore.myget.org/F/sc-powershell/api/v2

2. When prompted to install the module, press Y, and then Enter.

3. To install the PowerShell module, run the following cmdlet: Install-Module
SitecoreInstallFramework

4. When prompted to install the module, press Y, and then Enter.

Update the Sitecore Install Framework Module
As new features and bug fixes are periodically released, it is recommended that you update the
Sitecore Install Framework.

NOTE
This procedure is optional.

• To update the Sitecore Install Framework module, run the following cmdlet: Update-Module
SitecoreInstallFramework

2.1.2. Manual installation
Sitecore Install Framework is also provided as a ZIP package. You can download SIF from the Sitecore
Downloads page – https://dev.sitecore.net. When you download the package, the ZIP package might
be marked as blocked by Microsoft Windows. To continue the installation of SIF, you must first unblock
the ZIP package.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 4

https://sitecore.myget.org/gallery/sc-powershell
https://dev.sitecore.net/

Unblock a ZIP package
To unblock a ZIP package:

1. In Windows Explorer, navigate to the folder where you downloaded the packages, and right-
click the relevant ZIP file.

2. Click Properties.

3. In the Properties dialog box, on the General tab, click Unblock.

4. Click OK.

Extract the Sitecore Install Framework
The installation path that you use depends on where you want to install Sitecore Install Framework.
You can install it for all users (global path), for a specific user, or to a custom location.

Usage Path

All users C:\Program Files\WindowsPowerShell\Modules

Specific user C:\Users\<user>\Documents\WindowsPowerShell\Modules

Custom location Any path

For example, if you want to make SIF available to all users, extract the Sitecore Install
Framework.ZIP package to the following folder:

C:\Program Files\WindowsPowerShell\Modules\SitecoreInstallFramework

2.1.3. Validate the installation
After you install SIF, you can validate the installation to confirm that it is available for use. This
procedure is optional.

NOTE
This validation only works if you have installed SIF for All users (global).

To validate the installation, run the following cmdlet:

Get-Module SitecoreInstallFramework –ListAvailable

2.1.4. Import Sitecore Install Framework into a PowerShell session
If you added SIF to either an All users or Specific user path, you do not have to import it, as this is done
automatically, and you can immediately use it in a session by running any cmdlet available in the
PowerShell module.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 5

However, if you have installed SIF to a custom location, run the following cmdlet.

Import-Module C:\<CustomLocation>\SitecoreInstallFramework

2.2. Multiple Versions of Sitecore Install Framework
If you want to install a 9.0.x version of Sitecore XP on the same computer as a Sitecore XP 9.3.0
installation, you must also have SIF 1.2.1 installed. PowerShell uses the latest available version of a
module in a session by default. To install a specific version of SIF run the following command:

Install-Module -Name SitecoreInstallFramework -RequiredVersion x.x.x

Enter the appropriate value in the RequiredVersion parameter. The following table lists the
versions of SIF that are compatible with Sitecore XP 9.0.0 and later:

Sitecore XP Version Compatible SIF Version

9.0.x 1.2.1

9.1 2.0.0

9.1.1 2.1.0 or later

9.2 2.1.0 or later

9.3 2.2.0

2.2.1. Running a specific version of SIF
To run a specific version of SIF, launch a new Powershell session and run the following command:

Import-Module -Name SitecoreInstallFramework -Force -RequiredVersion x.x.x

You will use the specified version for the remainder of the session.

The next time you start a PowerShell session it will automatically use the latest available version.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 6

3. Customize Sitecore Install Framework

Sitecore Install Framework enables you to customize the installation process by using a standard
configuration design that you can extend by using custom PowerShell functions. The framework
defines a configuration format that supports tasks, parameters, config functions, and variables. For
example, you can configure a computer with one or more Sitecore instance, add services, or add
custom applications.

All Sitecore Install Framework configurations are written as JSON (JavaScript Object Notation) files.

This chapter contains the following sections:

• Create and customize configurations

• Create tasks

• Create config functions

• Invoking an installation

3.1. Create and customize configurations
You can use tasks, parameters, config functions, and variables to customize your installation process.
Custom tasks and config functions can also be packaged as a module, and be included in
configurations.

You can base your customization on one of the configurations provided by Sitecore, or you can create
your own configuration. This section describes the different components that you can use in a
Sitecore Install Framework configuration.

3.1.1. Tasks
Tasks are actions that are conducted in sequence when the Install-SitecoreConfiguration
cmdlet is called. A task is implemented as a PowerShell cmdlet.

Each task is identified by a unique name and must contain a Type property. A task can have
parameters or a collection of parameters passed to it. Tasks map directly to PowerShell functions that
are registered with Register-SitecoreInstallExtension -Type Task.

The following example shows a task of type Copy that you can use in a configuration to copy files
from one location to another:

{
 "Tasks": {
 "CopyFiles" : {
 "Description": "Copies files to the specified location",
 "Type": "Copy",
 "Params": {
 "Source": "c:\files",
 "Destination": "c:\newfiles"
 }
 }

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 7

 }
}

Skipping tasks
A task can include a Skip property that refers to a parameter, variable, or config function. If the return
value is true, the task is not executed.

{
 "Parameters : {
 "Param1" : {
 "Type" : "String"
 "DefaultValue" : ""
 }
 },
 "Tasks" :{
 "Task1" :{
 "Type" : "Copy
 "Params" :{
 "Source" : "C:\\Source",
 "Destination : "C:\\Destination"
 }
 "Skip" : "[not(Parameter('Param1'))]"
 }
 }
}

NOTE
To ensure that your configuration is valid, each task must have a unique name. This
means that the task can be directly executed, and the task can be identified in a log. It
also enables the same type of task to be used multiple times in a configuration.

In this configuration, if Param1 is set to any value, Task1 is skipped.

Requires (prerequisites)
A task may include a Requires block that allows prerequisite checks to be performed prior to
execution of the task. The prerequisite checks are performed after the Skip section. Prerequisites
should take the form of Config Functions which return a Boolean. If the prerequisite check returns
false then the Sitecore Install Framework will attempt to enter a nested shell within the current host.
You will then have an opportunity to correct the problem, either from the prompt provided or
externally.

Once you have corrected the problem enter exit to return to the Sitecore Install Framework. The
prerequisite checks will be performed again. Alternatively the prerequisite can be skipped by entering
the command SkipRequire. If the current host doesn't support a nested shell then the requirements
will be skipped.

{
 "Variables": {
 "Requires.Success" : [TestPath(Path:'C:\\Windows')]
 },
 "Tasks": {
 "Task1":{
 "Type": "WriteOutput",
 "Params" :{
 "InputObject":"Simple Task, depends on a variable."
 },
 "Requires": "[variable('Requires.Success')]"
 }

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 8

 },
 "Settings" : {
 "AutoRegisterExtensions" : True
 }
}

In this configuration, Task1 requires the output of the Requires.Success variable to check the
presence of C:\Windows to be true.

3.1.2. Parameters
Parameters let users change values inside a configuration at runtime. Parameters must declare a
type. They can also declare a default value and a description.

When you add a parameter to a configuration, it can be passed into a task using the parameter
config function. The task then points to the value provided in the configuration or the value passed
when Install-SitecoreConfiguration is called.

For example, to pass the Source and Destination parameters to the CopyFiles task:

{
 "Parameters": {
 "Source": { "Type": "string", "Description": "The source of files" },
 "Destination": { "Type": "string", "DefaultValue": "c:\newfiles" }
 },
 "Tasks": {
 "CopyFiles" : {
 "Type": "Copy",
 "Params": {
 "Source": "[parameter('Source')]",
 "Destination": "[parameter('Destination')]"
 }
 }
 }
}

On the one hand, the Source parameter does not contain a DefaultValue property, so it is required
when Install-SitecoreConfiguration is called.

However, on the other hand, the Destination parameter does have a default value. If the user does
not provide a value, the DefaultValue from the configuration is used.

The values at runtime are then passed to the CopyFiles task using the parameter config function.

To pass the values at the command line you must use the name of the parameter with the standard
PowerShell parameter syntax. For example:

Install-SitecoreConfiguration -Path .\configuration.json -Source c:\sourcefiles

Parameters validation
Parameter values can be validated before any tasks are started. Validation logic can be specified for
each parameters using config functions:

{
 "Parameters": {
 "Source": {
 "Type": "string",
 "DefaultValue": "c:\\myfiles",
 "Validate": "[validatelength(4, 260, $_)]"
 },

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 9

 }
}

In this example the parameter source is validated using the validatelength config function, which
ensures the value is between 4 and 260 characters long.

The Validate property accepts any config function that returns bool.

This is a list of the predefined functions that you can use for validation:

• ValidateCount - Validates that the parameter array length is within the specified range.

• ValidateLength - Validates that the parameter length falls within the range.

• ValidateNotNull - Verifies that the argument is not null.

• ValidateNotNullOrEmpty - Validates that the argument is not null and is not an empty string.

• ValidatePattern - Validates that the parameter matches the RegexPattern.

• ValidateRange - Validates that number parameter falls within the range specified by Min and
Max.

• ValidateSet - Validates that the parameter is present in a specified set.

When Install-SitecoreConfiguration is called, all the parameters with validation logic are
checked. If any validation fails, the installation command is aborted. You can bypass validation by
calling Install-SitecoreConfiguration with the –SkipValidation option.

3.1.3. Config functions
Config functions allow elements of the configuration to be dynamic, and allow you to calculate values,
invoke functions, and pass these values to tasks so that a configuration can be flexible.

A config function is written as a string enclosed in square brackets []. It is identified by a name and
can receive function parameters. For example: [functionName(param1,param2,param3)].

Each function maps directly to a PowerShell function that is registered with the following cmdlet:

Register-SitecoreInstallExtension -Type ConfigFunction

Named parameters
You can reference the parameters of a config function directly to ensure that the correct values are
passed to the expected parameter.

Named parameters are a comma separated list denoted by following the parameter name with a
colon:

{
 "Variables": {
 "Variable1": "GetFunction(Number:1234,String:'Text',Switch:True)]"
 }
}

In this example Variable1 calls the GetFunction function and passes it the named parameter
Number with the value 1234, the named parameter string with the value 'Text' and the switch
parameter Switch with the value true. This is the equivalent of typing Get-Function -
Number:1234 -String:"Text" -Switch:$True in the command line.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 10

Switch Parameters, if declared, must be set within the configuration to True or False.

Nested functions are also permitted and may refer to parameters, variables, or other config functions.
For example:

[FunctionName1(functionName2(Switch1:'value1',Switch2:'value2'),Switch3:'value3')]

3.1.4. Variables
Variables are values that are calculated within the configuration itself. Unlike parameters, variables
can use config functions to determine their value. Variables cannot be overridden at runtime;
however, when they are being calculated, they can use the values from parameters and other
variables.

In the following example, the Destination variable determines the destination path using the
environment and concat config functions:

{
 "Parameters": {
 "Source": { "Type": "string", "Description": "The source of files" }
 },
 "Variables": {
 "Destination": "[concat(environment('SystemDrive'),'\\newfiles')]"
 },
 "Tasks": {
 "CopyFiles" : {
 "Type": "Copy",
 "Params": {
 "Source": "[parameter('Source')]",
 "Destination": "[variable('Destination')]"
 }
 }
 }
}

3.1.5. Modules
The Sitecore Install Framework (SIF) provides many tasks and config functions. You can load additional
tasks and config functions by including them in a configuration.

If the module is available on PSModulePath, you can load modules by name. Alternatively, you must
load modules using an explicit path. Modules are loaded at the beginning of an installation.

If the additional features are packaged in a module on your computer, you can add them in the
Modules section of a configuration to import them into the install session. For example:

• To load a module by name –"MyCustomModule"

• To load a module by explicit path – "C:\\extensions\\extensions.psm1"

{
 "Modules": [
 "MyCustomModule",
 "C:\\extensions\\extensions.psm1"
]
}

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 11

https://docs.microsoft.com/en-us/powershell/developer/windows-powershell

3.1.6. Uninstall tasks
Configurations can optionally contain an UninstallTasks section. This section takes the same form
as the Tasks section. It should contain a list of tasks that will undo all the actions completed in the
Tasks section.

Uninstall tasks are invoked either by passing the –Uninstall switch to Install-
SitecoreConfiguration or by calling the Uninstall-SitecoreConfiguration alias. It is not
necessary to include the -Uninstall switch if you call Uninstall-SitecoreConfiguration.

Uninstall tasks can be treated in the same way as normal tasks and support all the same functionality
as tasks.

{
 "Parameters" :{
 "SolrService": {
 "Type": "string",
 "DefaultValue": "Solr-7.2.1",
 "Description": "The name of the Solr service."
 },
 },
 "UninstallTasks": {
 "RemoveSolrService": {
 "Type": "RemoveService",
 "Params": {
 "Name": "[parameter('SolrService')]"
 }
 },
 }
}

In this example, the RemoveSolrService uninstall task executes the RemoveService task and
stops and removes the service specified in the SolrService parameter.

If you have referenced other configurations in the Includes section, the Uninstall Tasks for each
of the included configurations are run, in reverse order, after the tasks in the first configuration.

3.1.7. Register
Each entry in the Register section allows you to expose PowerShell functions as Sitecore Install
Framework Tasks or ConfigFunctions within the config file for use in the Variables or Tasks
sections. They are registered automatically with the Register-SitecoreInstallExtension
command.

The section takes the format:

{
 "Register": {
 "Tasks" : {
 "NewSMBShare" : "New-SMBShare",
 "Sleep": "Start-Sleep"
 },
 "ConfigFunction": {
 "GetRandom" : "Get-Random"
 }
 }
}

This configuration registers the New-SMBShare cmdlet as a task with the name NewSMBShare and
registers Start-Sleep as a task with the name Sleep. The Get-Random cmdlet is registered as a
Config Function with the name GetRandom.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 12

As with extending the Sitecore Install Framework, the Tasks section of Register is for functions
that don't return anything and the ConfigFunctions section is for functions that return a value.

3.1.8. Automatic registration of extensions
Configuration files can optionally declare the AutoRegisterExtensions setting that allows dynamic
registration of Tasks and ConfigFunctions. The default value is false.

Any PowerShell cmdlet can be referenced in a config file using a de-hyphenated version of its name.

{
 "Tasks": {
 "RandomSleep": {
 "Type": "StartSleep",
 "Params": {
 "Seconds": "[GetRandom(10)]"
 }
 }
 },
 "Settings" : {
 "AutoRegisterExtensions" : true
 }
}

In this configuration, the RandomSleep task automatically registers and executes Start-Sleep as a
task and automatically registers and executes Get-Random as a ConfigFunction. It is the equivalent
of running Start-Sleep -Seconds (Get-Random 10) on the command line.

If two or more cmdlets match, the cmdlets are listed and an error is thrown.

3.1.9. Includes
Configurations may refer to other configuration files to allow reuse of elements and reduce repetition
in different configurations.

For example, the following config is a pseudo config which will configure a site. This is saved as
CreateSite.json:

{
 "Parameters": {
 "Destination":{
 "Type": "string"
 },
 "SourcePackage":{
 "Type": "string"
 },
 "SiteName":{
 "Type": "string"
 }
 },
 "Tasks":{
 "CreateSite":{
 "Type": "CreateSite",
 "Params":{
 "SiteName": "[parameter('SiteName')]",
 "Path": "[parameter('Destination')]"
 }
 },
 "InstallPackage":{
 "Type": "CreateSite",
 "Params":{
 "Source": "[parameter('SourcePackage')]",
 "Path": "[parameter('Destination')]"

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 13

 }
 }
 }
}

Another config can be created which includes the previous example:

{
 "Includes":{
 "CreateSite":{
 "Source": ".\\CreateSite.json"
 }
 }
}

You can override elements of the included config by using the namespace it was imported as (in this
case 'CreateSite'):

{
 "Parameters": {
 "CreateSite:Destination":{
 "Type": "string",
 "DefaultValue": "C:\\inetpub"
 }
 },
 "Includes":{
 "CreateSite":{
 "Source": ".\\CreateSite.json"
 }
 }
}

This example overrides the default value for the destination parameter imported by the CreateSite
config. A similar syntax is used to override Variables and Tasks.

We can also include the same config multiple times, as the name will be used to namespace each
feature:

{
 "Parameters": {
 "CreateSite:Destination":{
 "Type": "string",
 "DefaultValue": "C:\\inetpub"
 },
 "CreateBackupSite:Destination":{
 "Type": "string",
 "DefaultValue": "C:\\inetpubbackup"
 }
 },
 "Includes":{
 "CreateSite":{
 "Source": ".\\CreateSite.json"
 },
 "CreateBackupSite":{
 "Source": ".\\CreateSite.json"
 }
 }
}

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 14

3.1.10. Settings
Settings let you configure the default requirements of the installation process. Some settings can also
be overridden at runtime for the user by passing them as parameters to the Install-
SitecoreConfiguration cmdlet.

For example:

Install-SitecoreConfiguration -WarningAction Stop -InformationAction SilentlyContinue

The values in the settings are applied from lowest to highest in the following order:

• Default value – Contained in code.

• Configuration – Set in the configuration file.

• Command line – Passed at the command line.

Name Default
Value

Allowed Values Command
Line

Description

WarningAction Continue Continue

Ignore

Inquire

SilentlyContinue

Stop

Suspend

Yes The action to take when a
warning occurs.

ErrorAction Stop Continue

Ignore

Inquire

SilentlyContinue

Stop Suspend

Yes The action to take when an
error occurs.

InformationAction Continue Continue

Ignore

Inquire

SilentlyContinue

Stop

Suspend

Yes The action to take when
information is logged.

AutoRegisterExtensios False True

False

No Enables Dynamic registration
of Tasks and Config Functions.

Settings within configuration files can be declared as:

{
 "Settings": {
 "AutoRegisterExtensions": true,
 "InformationAction": "SilentlyContinue"
 }
}

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 15

This configuration enables the AutoRegisterExtensions feature and sets the
InformationAction preference to SilentlyContinue.

3.2. Create tasks
Tasks are PowerShell functions that you can invoke from within a Sitecore Install Framework
configuration. When you invoke a configuration, each task performs an action. Because a task is
implemented as a PowerShell function, it benefits from all the features that PowerShell offers.

3.2.1. The CmdletBinding Attribute
When you create a task, you must use the CmdletBinding attribute. This provides support for
common PowerShell parameters, for example, those that control error handling.

It is best practice to use the SupportsShouldProcess parameter so that users can test the actions
that the task takes, without applying them. The following example shows the use of the
CmdletBinding attribute in the Invoke-UnpackTask cmdlet:

Function Invoke-UnpackTask {
 [CmdletBinding(SupportsShouldProcess=$true)]
 param(
 # Parameters
)
 # function code
}

For more information about the CmdletBinding attribute, see About Functions
CmdletBindingAttribute in the Microsoft PowerShell documentation.

3.2.2. Task parameters
Task parameters are declared as normal PowerShell parameters. You can use validation and types to
restrict the values that can be passed to the cmdlet. This includes marking parameters as mandatory,
and support for multiple parameter sets.

When a task is called from a configuration, the Params property is mapped to the parameters declared
in the PowerShell function. For example, the Invoke-CopyTask cmdlet declares the following
parameters:

Function Invoke-CopyTask {
 [CmdletBinding(SupportsShouldProcess=$true)]
 param(
 [Parameter(Mandatory=$true)]
 [ValidateScript({ Test-Path $_ })]
 [string]$Source,
 [Parameter(Mandatory=$true)]
 [ValidateScript({ Test-Path $_ -IsValid })]
 [string]$Destination
)
function code
}

• The Source parameter is mandatory and checks that the given value is a string that points to a
path that exists.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 16

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=powershell-6

• The Destination parameter is also mandatory and checks that the given value is a string that is a
valid file path.

The following is an example of how to declare the Copy task in a configuration where only the
mandatory parameters are used:

{
 "Tasks": {
 "CopySomeFiles": {
 "Type": "Copy",
 "Params": {
 "Source":"c:\somefile\example.txt",
 "Destination":"c:\copied\"
 }
 }
 }
}

3.2.3. Return values from task
Tasks do not need return values. When invoked through a configuration, values returned from a task
are not captured or processed directly. However, any value that you return from a task is shown in the
install logs.

3.2.4. Write to the logs
Previous versions of SIF used the Write-TaskInfo function to log information. This function has
been deprecated and will be removed in a future version. Use the Write-Information function
instead.

Write-Information -MessageData task "[Info] Updated"

Silent output
Silent output can be achieved by re-directing all the streams to $null.

Install-SitecoreConfiguration -Path MyConfig.json *> $null

Creating a log file
In version 1.x, every time you used the built-in PowerShell transcript features to invoke Install-
SitecoreConfiguration, a log file was automatically created.

This feature has been removed due to issues with different hosts and with the information that was
logged to a log file. To create a log file for an install we suggest the following syntax:

c:\> Install-SitecoreConfiguration <parameters> *>&1 | Tee-Object <logfile>

*>&1 merges every stream - information, warning, and so on into the output stream.

| Tee-Object <logfile> outputs the stream to the console and a log file.

3.2.5. Include tasks in a configuration
Once a task has been written, it must be registered with SIF. Tasks can be included in a configuration
by packaging them as a PowerShell module and adding them to the Modules section of a
configuration, by directly registering them within a configuration, or enabling the
autoregisterextensions function.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 17

By using the Register-SitecoreInstallExtension cmdlet, the task is made available for use in
configurations. For example, to register the Copy-CustomItems cmdlet as the CustomCopy task, use
the following cmdlet:

Register-SitecoreInstallExtension -Command Copy-CustomItems -As CustomCopy -Type Task

NOTE
You can replace an existing registered task by using the -Force parameter. The following
custom cmdlet replaces the default copy task: Register-
SitecoreInstallExtension -Command Copy-CustomItems -As Copy -Type
Task –Force.

3.3. Create config functions
Config functions are PowerShell functions that you can invoke from within a Sitecore Install
Framework configuration to access and calculate values that can be passed to a task.

Because a config function is implemented as a PowerShell function, it benefits from all the features
that PowerShell offers. This includes parameter validation, strict mode, requires, and others.

Config functions must always return a value, and this value can be used by other config functions or
by tasks within a configuration.

3.3.1. Config function parameters
Config function parameters are declared as normal PowerShell parameters. You can use validation
and types to restrict the values that can be passed. This includes marking parameters as mandatory
and support for multiple parameter sets.

When a config function is called from a configuration, the parameters are applied in the order that
they are declared. If you want them to be applied in a different order, use the Position argument to
specify this.

The Invoke-JoinConfigFunction function declares the following parameters:

Function Invoke-JoinConfigFunction {
 param(
 [Parameter(Mandatory=$true)]
 [psobject[]]$Values = @(),
 [Parameter(Mandatory=$false)]
 [string]$Delimiter = ","
)

 # function code
}

In a configuration, this can be used as follows:

{
 "Parameters": {
 "Values": { "Type": "string[]", "DefaultValue": [1,2,3,4,5]
 },

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 18

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters?view=powershell-5.1#position-argument

 "Variables": {
 "Joined": "[join(parameter('Values'), '-')]
 }
}

When the Joined variable is evaluated, it results in a value of: 1-2-3-4-5.

3.3.2. Include config functions in a configuration
Once a config function has been written, it must be registered with SIF. Config functions can be
included in a configuration by packaging them as a PowerShell module and adding them to the
Modules section of a configuration.

By using the Register-SitecoreInstallExtension cmdlet, the config function is made available for
use in configurations. For example the Get-CustomJoin cmdlet can be registered as the
CustomJoin config function using the following cmdlet:

Register-SitecoreInstallExtension
-Command Get-CustomJoin -As CustomJoin -Type ConfigFunction

NOTE
You can also replace an existing registered config function by using the -Force
parameter. The following replaces the default join config function with a custom
cmdlet:

Register-SitecoreInstallExtension -Command Get-CustomJoin -As Join -Type
ConfigFunction –Force

3.4. Invoking an installation
To start a Sitecore installation the following syntax is used.

Install-SitecoreConfiguration [-Path] <String> [[-Tasks] <String[]>] [[-From] <String>] [[-To]
<String>]
[[-Skip] <String[]>] [[-WorkingDirectory] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

This will begin a Sitecore installation using the given configuration loaded from a path.

The working directory is set as follows:

• If provided, the working directory is set to the given path.

• The current directory is used.

One or more tasks can also be passed to enable the execution of only a selection of tasks from the full
configuration. If no tasks are passed (or an empty list is provided) all the tasks are executed. Execution
of tasks can be further isolated by providing the 'From' and 'To' parameters. This executes an inclusive
subset of tasks.

Parameters contained in the configuration file can also be overridden at the command line.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 19

3.4.1. Examples
Examples based on JSON configuration files.

Example 1

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json

Starts an installation based on a JSON configuration file.

Example 2

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -Tasks Alpha,Beta,Epsilon

Starts an installation based on a JSON configuration file and executes only the named tasks.

Example 3

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -Skip Alpha,Beta

Starts an installation based on a JSON configuration file and executes all the tasks except the named
tasks.

Example 4

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -From Beta

Starts an installation based on a JSON configuration file and executes from the specified task.

Example 5

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -From Alpha -To Beta

Starts an installation based on a JSON configuration file and executes from the task named Alpha to
the task named Beta.

Example 6

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -SiteName 'MySite'

Starts an installation based on a JSON configuration file, overriding the value for the SiteName
parameter contained in that file.

Example 7

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -SkipValidation

Starts an installation based on a JSON configuration file and skips parameter validation.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 20

4. Further guidance and troubleshooting

Sitecore Install Framework contains embedded documentation about tasks and configuration
functions that you can access directly from the PowerShell command line.

This chapter contains the following section:

• Further usage and help

• Troubleshooting

4.1. Further usage and help
This section contains the following additional information that might be useful when you are using
Sitecore Install Framework:

• Run tasks and config functions directly

• Execution policies

• Get help about Sitecore Install Framework

4.1.1. Run tasks and config functions directly
Both tasks and config functions are implemented as PowerShell cmdlets. When SIF has been installed,
you can directly invoke the cmdlets using standard PowerShell syntax.

Running tasks or config functions directly allows you to test the results at the command line. You can
also integrate the commands into your own PowerShell scripts. For example, you can directly invoke
the EnsurePath task by using its full PowerShell syntax:

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 21

Similarly, you can directly invoke the Join config function by using its full PowerShell syntax:

4.1.2. Execution policies
The execution policies in PowerShell let you restrict the conditions in which scripts and modules are
loaded.

You can set policies for the computer, the user, or for the current session. You can also apply them by
using a Group Policy. Sitecore Install Framework is digitally signed. This means that the module can be
imported and executed in a PowerShell session running under any execution policy, except
Restricted.

For more information about PowerShell Execution Policies, see the following link.

4.1.3. Get help about Sitecore Install Framework
Sitecore Install Framework contains information about each task and config function, and there is also
documentation about the general use of the framework:

about_SitecoreInstallFramework: contains general information about the framework.

about_SitecoreInstallFramework_Extending: contains information about extension points that
let you customize the framework for your specific installation needs.

about_SitecoreInstallFramework_Configurations: contains examples of how to use tasks,
scripts, and modules if you extend the framework.

There are three ways to view the help documentation:

• In the PowerShell window.

• With a markdown reader.

• As HTML pages.

In addition to the help for individual tasks and functions, it is also possible to get a list of all available
tasks or config functions using the Get-Command cmdlet.

View help in the PowerShell window
The PowerShell module has embedded help documentation. To access the help for a specific
PowerShell command or function, enter the Get-Help cmdlet. The returned help is displayed in the
command line.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 22

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-5.1

If you want to open the help in a separate window, add the ShowWindow parameter to the Get-Help
command. For example: Get-Help Invoke-CommandTask -ShowWindow

View help with a markdown reader
When you unpack Sitecore Install Framework, it contains a folder of markdown documentation that
you can read with any text editor or markdown reader.

To read the documentation, in the Windows Explorer, navigate to the SitecoreInstallFramework
\docs folder and use a text editor or markdown reader to open the relevant topic.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 23

The following image shows a subset of the topics that are available:

View help as HTML pages
Sitecore Install Framework contains a folder of HTML pages that you can read with any browser. To
read the documentation:

1. In Windows Explorer, navigate to the SitecoreInstallFramework\docs\html folder.

2. To open it in the default browser window, double-click the relevant topic.

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 24

Get a list of the available tasks and config functions
To see the tasks and config functions that are available, run the Get-SitecoreInstallExtension
cmdlet.

You can filter the list by passing a value to the Type parameters. The following command only returns
the tasks:

Get-SitecoreInstallExtension -Type Task

To return the tasks and config functions that are available when a particular configuration is run, you
must pass the path to the configuration file to the Path parameter.

For example,

Get-SitecoreInstallExtension -Path c:\configuration.json

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 25

displays the default tasks and config functions, as well as the extra registrations brought in by the
configuration.

4.2. Troubleshooting
This section describes some of the issues you might encounter when using the Sitecore Install
Framework, and how to resolve them.

4.2.1. Internal server error
After a successful installation, the CM instance cannot be started and the following error is displayed:

HTTP Error 500.19 – Internal Server Error
The requested page cannot be accessed because the related configuration data for the page is
invalid.
Error Code 0x8007000d

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 26

To resolve this error, you must install the URL Rewrite module for IIS:

• Install URL Rewrite 2.1 using the Web Platform Installer.

4.2.2. Error when invoking the Web Deploy task
When you execute the Web Deploy task (Invoke-WebDeployTask), you can see the following error:
ERROR_SCRIPTDOM_NEEDED_FOR_SQL_PROVIDER

This error appears when the web deploy package installs databases using the SQL DACFx framework,
and the provider has not been registered.

To resolve this error, ensure that you have the following components installed:

• SQL Server System CLR Types (2016 version)

• SQL Server Transact-SQL ScriptDom (2016 version)

• SQL Server Data-Tier Application (2016 version)

NOTE
If you are running the Sitecore installation from a 64-bit computer (x64), you must
install both the 32-bit (x86) and 64-bit versions of the SQL Server components.

If you still receive the error after installing the SQL Server components, you must directly register the
ScriptDom components.

To register the ScriptDom component:

1. Find the path to the ScriptDom library. In Windows Explorer, navigate to the C:\Program
Files (x86)\Microsoft SQL Server folder.

2. The Microsoft SQL Server folder contains one or more subfolders. Click the subfolders (\90,
\100, \110, \120, \130) and find the \DAC\bin
\Microsoft.SqlServer.TransactSql.ScriptDom.dll file.

3. Copy or write down the path where the DLL file is located.

4. Launch PowerShell and navigate to the NETFX 4.5.1 Tools folder – C:\Program Files
(x86)\Microsoft SDKs\Windows\v8.1A\bin\NETFX 4.5.1 Tools.

5. Invoke the gacutil application and enter the path that you copied in step 3. For example:

gacutil.exe /i C:\Program Files (x86)\Microsoft SDKs\Windows\v8.1A\bin\NETFX 4.5.1 Tools\120\DAC
\bin\Microsoft.SqlServer.TransactSql.ScriptDom.dll

4.2.3. Missing modules
Some features within the SIF require that other modules be loaded as well. You might see warnings
that certain tasks cannot be loaded when importing the module.

You can continue to use other features in the module, however, the features that displayed warnings
cannot be executed. For example, if the WebAdministration module is not available, you see the
following warnings:

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 27

https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=52676
https://www.microsoft.com/en-us/download/details.aspx?id=52676
https://www.microsoft.com/en-us/download/details.aspx?id=46898

When this happens, the module is loaded but the following tasks are not available:

• Invoke-AppPoolTask

• Invoke-WebBindingTask

• Invoke-WebsiteTask

NOTE
To install the WebAdministration module, you must first configure IIS on your
computer. For more details and steps to configure IIS, see the Configuring IIS section in
the Sitecore Experience Platform 9.1 Installation Guide that you can download from the
Sitecore Downloads page.

4.2.4. Administrator permissions
To run SIF, you must run PowerShell as an Administrator.

IMPORTANT
If you try to use SIF in a non-administration window, you might see one of the following
error messages and you will not be able to install Sitecore.

4.2.5. Sitecore installation failed while using Skype
When using Skype (or other communication tools) while installing Sitecore, it is possible that your
xConnect installation might fail. This is due to Skype and Sitecore xConnect both using port 443, which
interferes with the installation. If this happens, you must change your Skype configuration as outlined
in the following article.

Another approach to solving this installation issue is to update the default HTTP port, and if needed
the HTTPS port.

Updating the default HTTP port
Updating the default HTTP port can be applied to the following Sitecore configurations:

• All Sitecore configurations

• All xConnect configurations

To update the default HTTP port:

1. In a text editor, open the relevant configuration file, for example: sitecore-xp1.json.

2. In the CreateWebsite task, add a Port property to the Params collection with the new
value. For example: "CreateWebsite": {

Sitecore Install Framework 2.2.0 Configuration Guide

© Copyright 2019, Sitecore® - all rights reserved. 28

https://dev.sitecore.net
https://answers.microsoft.com/en-us/windows/forum/windows_7-winapps/unable-to-remove-port-443-from-skype/4e224910-761a-4de5-a6d8-ae4150656d68

	Sitecore Install Framework 2.2.0 Configuration Guide
	Table of Contents
	1. Introduction
	1.1. Getting started
	1.1.1. How to use this guide

	2. Install the Sitecore Install Framework module
	2.1. Install the Sitecore Install Framework Module
	2.1.1. Installation with Microsoft PowerShell
	Update the Sitecore Install Framework Module

	2.1.2. Manual installation
	Unblock a ZIP package
	Extract the Sitecore Install Framework

	2.1.3. Validate the installation
	2.1.4. Import Sitecore Install Framework into a PowerShell session

	2.2. Multiple Versions of Sitecore Install Framework
	2.2.1. Running a specific version of SIF

	3. Customize Sitecore Install Framework
	3.1. Create and customize configurations
	3.1.1. Tasks
	Skipping tasks
	Requires (prerequisites)

	3.1.2. Parameters
	Parameters validation

	3.1.3. Config functions
	Named parameters

	3.1.4. Variables
	3.1.5. Modules
	3.1.6. Uninstall tasks
	3.1.7. Register
	3.1.8. Automatic registration of extensions
	3.1.9. Includes
	3.1.10. Settings

	3.2. Create tasks
	3.2.1. The CmdletBinding Attribute
	3.2.2. Task parameters
	3.2.3. Return values from task
	3.2.4. Write to the logs
	Silent output
	Creating a log file

	3.2.5. Include tasks in a configuration

	3.3. Create config functions
	3.3.1. Config function parameters
	3.3.2. Include config functions in a configuration

	3.4. Invoking an installation
	3.4.1. Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	4. Further guidance and troubleshooting
	4.1. Further usage and help
	4.1.1. Run tasks and config functions directly
	4.1.2. Execution policies
	4.1.3. Get help about Sitecore Install Framework
	View help in the PowerShell window
	View help with a markdown reader
	View help as HTML pages
	Get a list of the available tasks and config functions

	4.2. Troubleshooting
	4.2.1. Internal server error
	4.2.2. Error when invoking the Web Deploy task
	4.2.3. Missing modules
	4.2.4. Administrator permissions
	4.2.5. Sitecore installation failed while using Skype
	Updating the default HTTP port

