
Sitecore Installation Framework
2.3.0 Configuration Guide

September 7, 2023
Sitecore Experience Platform 10.X

Table of Contents
1. Introduction ... 3

1.1. Getting started .. 3
1.1.1. How to use this guide ... 3

2. Install the Sitecore Installation Framework module .. 4
2.1. Install the Sitecore Installation Framework Module ... 4

2.1.1. Install SIF with Microsoft PowerShell ... 4
2.1.2. Install SIF manually ... 5
2.1.3. Validate the installation .. 5
2.1.4. Import Sitecore Installation Framework into a PowerShell session 6

2.2. Multiple Versions of Sitecore Installation Framework .. 6
2.2.1. Run a specific version of SIF .. 6

3. Customize the Sitecore Installation Framework .. 7
3.1. Create and customize configurations .. 7

3.1.1. Tasks .. 7
3.1.2. Parameters .. 8
3.1.3. Config functions ... 10
3.1.4. Variables .. 11
3.1.5. Modules ... 11
3.1.6. Uninstall tasks .. 11
3.1.7. Register .. 12
3.1.8. Automatic registration of extensions .. 12
3.1.9. Includes ... 13
3.1.10. Settings .. 14

3.2. Create tasks .. 15
3.2.1. The CmdletBinding Attribute .. 16
3.2.2. Task parameters .. 16
3.2.3. Return values from task ... 17
3.2.4. Write to the logs ... 17
3.2.5. Include tasks in a configuration .. 17

3.3. Create config functions ... 18
3.3.1. Config function parameters .. 18
3.3.2. Include config functions in a configuration ... 18

3.4. Invoking an installation ... 19
3.4.1. Examples .. 19

4. Further guidance and troubleshooting ... 21
4.1. Further usage and help ... 21

4.1.1. Run tasks and config functions directly ... 21
4.1.2. Execution policies ... 22
4.1.3. Get help about Sitecore Installation Framework ... 22

4.2. Troubleshooting .. 26
4.2.1. Internal server error ... 26
4.2.2. Error when you invoke the WebDeploy task .. 27
4.2.3. Missing modules .. 27
4.2.4. Administrator permissions ... 28
4.2.5. Sitecore installation failed while using Skype .. 28

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 2

1. Introduction

This document describes Sitecore Installation Framework (SIF) for Sitecore XP 10.X.

1.1. Getting started

Sitecore Installation Framework is a Microsoft® PowerShell module that supports local and remote
installations of Sitecore XP. It is fully extensible and you can use it to install the entire Sitecore solution
(XP), or the CMS-only mode (XM) solution.

This guide describes how to configure and customize the installation process with SIF.

1.1.1. How to use this guide
This guide describes how to configure your Sitecore installation with SIF, as well as various cmdlets
and extensibility points.

This guide is intended to be a supplement all the Sitecore XP installation guides and to help you
customize your installation. For more information about system requirements, prerequisites, the
general installation process, and the additional configuration tasks that are necessary after you install
Sitecore XP, see the appropriate installation guide.

You can download the Sitecore installation guides from the Sitecore Downloads page.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 3

https://dev.sitecore.net

2. Install the Sitecore Installation Framework module

This chapter contains information about installing, updating, validating, and importing the Sitecore
Installation Framework module.

2.1. Install the Sitecore Installation Framework Module

You can install the Sitecore Installation Framework (SIF) module directly with Microsoft PowerShell®,
or you can install it manually by downloading the module as a ZIP package.

2.1.1. Install SIF with Microsoft PowerShell
SIF is available from the Sitecore Gallery. The Sitecore Gallery is a public feed where you can download
the PowerShell modules created by Sitecore.

To install SIF with PowerShell:

1. To add the repository, in Windows, open PowerShell as an administrator and run the following
cmdlet:

Register-PSRepository -Name SitecoreGallery -SourceLocation https://nuget.sitecore.com/
resources/v2/

2. When you are prompted to add the repository, press Y, and then Enter.

3. To install the PowerShell module, run the following cmdlet:

Install-Module SitecoreInstallFramework

4. When you are prompted to install the module, press Y, and then Enter.

Update the Sitecore Installation Framework Module
As new features and bug fixes are periodically released, it is recommended that you update the
Sitecore Installation Framework.

NOTE
This procedure is optional.

• To update the Sitecore Installation Framework module, run the following cmdlet:

Update-Module SitecoreInstallFramework

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 4

https://cloudsmith.io/~sitecore/repos/resources/packages/

2.1.2. Install SIF manually
Sitecore Installation Framework is also provided as a ZIP package. You can download SIF from the
Sitecore Downloads page – https://dev.sitecore.net. When you download the package, the ZIP package
might be marked as blocked by Microsoft Windows. To continue the installation of SIF, you must first
unblock the ZIP package.

Unblock a ZIP package
To unblock a ZIP package:

1. In  Windows Explorer, navigate to the folder where you downloaded the packages, and right-
click the relevant ZIP file.

2. Click Properties.

3. In the Properties dialog box, on the General tab, click Unblock.

4. Click OK.

Extract the Sitecore Installation Framework
The installation path that you use depends on where you want to install Sitecore Installation
Framework. You can install it for all users (global path), for a specific user, or to a custom location.

Usage Path

All users C:\Program Files\WindowsPowerShell\Modules

Specific user C:\Users\<user>\Documents\WindowsPowerShell\Modules

Custom location Any path

For example, if you want to make SIF available to all users, extract the Sitecore Install
Framework.ZIP package to the following folder:

C:\Program Files\WindowsPowerShell\Modules\SitecoreInstallFramework

2.1.3. Validate the installation
To confirm that SIF is available for use after you install it, you can validate the installation. This
procedure is optional.

NOTE
Validation only works if you have installed SIF for All users (global).

To validate the installation, run the following cmdlet:

Get-Module SitecoreInstallFramework –ListAvailable

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 5

https://dev.sitecore.net/

2.1.4. Import Sitecore Installation Framework into a PowerShell session
If you have made SIF available to either All users or a Specific user, you do not have to import it, as
this is done automatically, and you can immediately use it in a session by running any cmdlet that is
available in the PowerShell module.

However, if you have installed SIF to a custom location, you must run the following cmdlet.

Import-Module C:\<CustomLocation>\SitecoreInstallFramework

2.2. Multiple Versions of Sitecore Installation Framework

PowerShell uses the latest available version of a module in a session by default.

If you want to install a version of Sitecore XP that uses an older version of SIF, you must install the
appropriate version of SIF.

For example, if you want to install a 9.0.x version of Sitecore XP on the same computer as a Sitecore
XP 10.0.0 installation, you must also have SIF 1.2.1 installed.

To install a specific version of SIF, run the following cmdlet:

Install-Module -Name SitecoreInstallFramework -RequiredVersion x.x.x

Enter the appropriate value in the RequiredVersion parameter. The following table lists the
versions of SIF that are compatible with Sitecore XP 9.0.0 and later:

Sitecore XP Version Compatible SIF Version

9.0.x 1.2.1

9.1 2.0.0

9.1.1 2.1.0 or later

9.2 2.1.0 or later

9.3 2.2.0

10.X 2.3.0

2.2.1. Run a specific version of SIF
To run a specific version of SIF, start a new PowerShell session and run the following cmdlet:

Import-Module -Name SitecoreInstallFramework -Force -RequiredVersion x.x.x

You will use the specified version for the remainder of the session.

The next time you start a PowerShell session, it will automatically use the latest available version.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 6

3. Customize the Sitecore Installation Framework

SIF lets you customize the installation process by using a standard configuration design that you
can extend with custom PowerShell functions. The framework defines a configuration format that
supports tasks, parameters, config functions, and variables. For example, you can configure a
computer with one or more Sitecore instances, add services, or add custom applications.

SIF configurations are written as JSON (JavaScript Object Notation) files.

3.1. Create and customize configurations

You can use tasks, parameters, config functions, and variables to customize the installation process.
Custom tasks and config functions can also be packaged as a module, and included in configurations.

You can base your customization on one of the configurations provided by Sitecore, or you can
create your own configuration. This section describes the different components that you can use in a
Sitecore Installation Framework configuration.

3.1.1. Tasks
Tasks are actions that are conducted in sequence when you run the Install-
SitecoreConfiguration cmdlet. A task is implemented as a PowerShell cmdlet.

Each task is identified by a unique name and must contain a Type property. A task can have
parameters or a collection of parameters passed to it. Tasks map directly to PowerShell functions
and are registered with the Register-SitecoreInstallExtension -Type task.

The following example, is a task of the Copy type that you can use in a configuration to copy files from
one location to another:

{
 "Tasks": {
 "CopyFiles" : {
 "Description": "Copies files to the specified location",
 "Type": "Copy",
 "Params": {
 "Source": "c:\files",
 "Destination": "c:\newfiles"
 }
 }
 }
}

Skipping tasks
A task can include a Skip property that refers to a parameter, variable, or config function. If the return
value is true, the task is not executed.

{
 "Parameters : {
 "Param1" : {

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 7

 "Type" : "String"
 "DefaultValue" : ""
 }
 },
 "Tasks" :{
 "Task1" :{
 "Type" : "Copy
 "Params" :{
 "Source" : "C:\\Source",
 "Destination : "C:\\Destination"
 }
 "Skip" : "[not(Parameter('Param1'))]"
 }
 }
}

NOTE
To ensure that your configuration is valid, each task must have a unique name. This
means that the task can be directly executed, and the task can be identified in a log. It
also lets you use the same type of task multiple times in a configuration.

In this configuration, if Param1 is set to any value, Task1 is skipped.

Requires (prerequisites)
A task can include a Requires block that allows prerequisite checks to be performed prior to
executing the task. The prerequisite checks are performed after the Skip section. Prerequisites
should take the form of Config Functions which return a Boolean. If the prerequisite check returns
false , SIF will try to enter a nested shell within the current host. You will then have an opportunity to
correct the problem, either from the prompt provided or externally.

After you have corrected the problem, enter exit to return to SIF. The prerequisite checks are then
performed again. Alternatively, you can enter the SkipRequire command to skip this prerequisite. If
the current host does not support a nested shell, the requirements are skipped.

{
 "Variables": {
 "Requires.Success" : [TestPath(Path:'C:\\Windows')]
 },
 "Tasks": {
 "Task1":{
 "Type": "WriteOutput",
 "Params" :{
 "InputObject":"Simple Task, depends on a variable."
 },
 "Requires": "[variable('Requires.Success')]"
 }
 },
 "Settings" : {
 "AutoRegisterExtensions" : True
 }
}

In this configuration, Task1 requires the output of the Requires.Success variable to check that the
presence of C:\Windows is true.

3.1.2. Parameters
Parameters let users change values inside a configuration at runtime. Parameters must declare a
type. They can also declare a default value and a description.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 8

When you add a parameter to a configuration, it can be passed into a task using the parameter
config function. The task then points to the value provided in the configuration or the value passed
when Install-SitecoreConfiguration is called.

For example, to pass the Source and Destination parameters to the CopyFiles task:

{
 "Parameters": {
 "Source": { "Type": "string", "Description": "The source of files" },
 "Destination": { "Type": "string", "DefaultValue": "c:\newfiles" }
 },
 "Tasks": {
 "CopyFiles" : {
 "Type": "Copy",
 "Params": {
 "Source": "[parameter('Source')]",
 "Destination": "[parameter('Destination')]"
 }
 }
 }
}

The Source parameter does not contain the DefaultValue property, and therefore it is required when
Install-SitecoreConfiguration is called.

However, the Destination parameter does have a default value. If the user does not provide the
value, the DefaultValue from the configuration is used.

The values at runtime are then passed to the CopyFiles task you use the parameter config function.

To pass the values at the command line, you must use the name of the parameter with the standard
PowerShell parameter syntax. For example:

Install-SitecoreConfiguration -Path .\configuration.json -Source c:\sourcefiles

Parameters validation
Parameter values can be validated before any tasks are started. Validation logic can be specified for
each parameter using config functions:

{
 "Parameters": {
 "Source": {
 "Type": "string",
 "DefaultValue": "c:\\myfiles",
 "Validate": "[validatelength(4, 260, $_)]"
 },
 }
}

In this example, the Source parameter is validated by the validatelength config function, which
ensures that the value is between 4 and 260 characters long.

The Validate property accepts any config function that returns bool.

The predefined functions that you can use for validation are:

• ValidateCount - validates that the array length of the parameter is within the specified range.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 9

• ValidateLength - validates that the length of the parameter is within the specified range.

• ValidateNotNull - verifies that the argument is not null.

• ValidateNotNullOrEmpty - validates that the argument is not null and is not an empty string.

• ValidatePattern - validates that the parameter matches the RegexPattern.

• ValidateRange - validates that number parameter falls within the range specified by Min and
Max.

• ValidateSet - validates that the parameter is present in a specified set.

When you call Install-SitecoreConfiguration, all the parameters with validation logic are
checked. If any validation fails, the installation command is aborted. To bypass validation, call
Install-SitecoreConfiguration and use the –SkipValidation option.

3.1.3. Config functions
Config functions allow elements of the configuration to be dynamic, and allow you to calculate values,
invoke functions, and pass these values to tasks so that a configuration can be flexible.

A config function is written as a string enclosed in square brackets []. The function is identified by a
name and can receive function parameters. For example:

[functionName(param1,param2,param3)]

Each function maps directly to a PowerShell function that is registered with the following cmdlet:

Register-SitecoreInstallExtension -Type ConfigFunction

Named parameters
To ensure that the correct values are passed to the expected parameter, you can reference the
parameters of a config function directly.

Named parameters should be in a comma separated list. The parameter name must be followed by a
colon:

{
 "Variables": {
 "Variable1": "GetFunction(Number:1234,String:'Text',Switch:True)]"
 }
}

In this example, Variable1 calls the GetFunction function and passes the Number parameter the
value 1234, the string parameter the value 'Text', and the Switch parameter the value True.
This is the equivalent of typing Get-Function -Number:1234 -String:"Text" -Switch:$True
in the command line.

In the configuration Switch parameters, if declared, must be set to True or False.

Nested functions are also permitted and may refer to parameters, variables, or other config functions.
For example:

[FunctionName1(functionName2(Switch1:'value1',Switch2:'value2'),Switch3:'value3')]

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 10

3.1.4. Variables
Variables are values that are calculated within the configuration itself. Unlike parameters, variables
can use config functions to determine their value. Variables cannot be overridden at runtime.
However, when they are calculated, they can use the values from parameters and other variables.

In the following example, the Destination variable uses the environment and concat config
functions to determine the destination path:

{
 "Parameters": {
 "Source": { "Type": "string", "Description": "The source of files" }
 },
 "Variables": {
 "Destination": "[concat(environment('SystemDrive'),'\\newfiles')]"
 },
 "Tasks": {
 "CopyFiles" : {
 "Type": "Copy",
 "Params": {
 "Source": "[parameter('Source')]",
 "Destination": "[variable('Destination')]"
 }
 }
 }
}

3.1.5. Modules
SIF provides many tasks and config functions. You can load additional tasks and config functions by
including them in a configuration.

If the module is available on PSModulePath, you can load modules by name. Alternatively, you must
load modules using an explicit path. Modules are loaded at the beginning of an installation.

If the additional features are packaged in a module on your computer, you can import them into the
install session by adding them in the Modules section of a configuration. For example:

• To load a module by name –"MyCustomModule"

• To load a module by explicit path – "C:\\extensions\\extensions.psm1"

{
 "Modules": [
 "MyCustomModule",
 "C:\\extensions\\extensions.psm1"
]
}

3.1.6. Uninstall tasks
Configurations can contain an optional UninstallTasks section. This section has the same form as
the Tasks section. It should contain a list of tasks that undo all the actions completed in the Tasks
section.

Uninstall tasks are invoked either by passing the –Uninstall switch to Install-
SitecoreConfiguration or by calling the Uninstall-SitecoreConfiguration alias. If you call
Uninstall-SitecoreConfiguration, you do not have to include the -Uninstall switch.

Uninstall tasks can be treated in the same way as normal tasks and support all the same functionality.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 11

https://docs.microsoft.com/en-us/powershell/developer/windows-powershell

{
 "Parameters" :{
 "SolrService": {
 "Type": "string",
 "DefaultValue": "Solr-7.2.1",
 "Description": "The name of the Solr service."
 },
 },
 "UninstallTasks": {
 "RemoveSolrService": {
 "Type": "RemoveService",
 "Params": {
 "Name": "[parameter('SolrService')]"
 }
 },
 }
}

In this example, the RemoveSolrService uninstall task executes the RemoveService task and stops
and removes the service specified in the SolrService parameter.

If you have referenced other configurations in the Includes section, the Uninstall Tasks for each
of the included configurations are run, in reverse order, after the tasks in the first configuration.

3.1.7. Register
Each entry in the Register section allows you to expose PowerShell functions as SIF tasks or
ConfigFunctions within the config file that you can use in the Variables or Tasks sections. They
are registered automatically with the Register-SitecoreInstallExtension command.

The section takes the format:

{
 "Register": {
 "Tasks" : {
 "NewSMBShare" : "New-SMBShare",
 "Sleep": "Start-Sleep"
 },
 "ConfigFunction": {
 "GetRandom" : "Get-Random"
 }
 }
}

This configuration registers the New-SMBShare cmdlet as a task with the name NewSMBShare and
registers Start-Sleep as a task with the name Sleep. The Get-Random cmdlet is registered as a
config function with the name GetRandom.

Just like when you extend SIF, the Tasks section of Register is for functions that don't return
anything and the ConfigFunctions section is for functions that return a value.

3.1.8. Automatic registration of extensions
Configuration files can optionally declare the AutoRegisterExtensions setting that allows you to
dynamically register Tasks and ConfigFunctions. The default value is false.

Any PowerShell cmdlet can be referenced in a config file using a de-hyphenated version of its name.

{
 "Tasks": {

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 12

 "RandomSleep": {
 "Type": "StartSleep",
 "Params": {
 "Seconds": "[GetRandom(10)]"
 }
 }
 },
 "Settings" : {
 "AutoRegisterExtensions" : true
 }
}

In this configuration, the RandomSleep task automatically registers and executes Start-Sleep as a
task and Get-Random as a ConfigFunction. It is the equivalent of running Start-Sleep -Seconds
(Get-Random 10) on the command line.

If two or more cmdlets match, the cmdlets are listed and an error is thrown.

3.1.9. Includes
To reuse elements and reduce repetition, configurations can refer to other configuration files.

For example, the following config is a pseudo config which configures a site. This is saved as
CreateSite.json:

{
 "Parameters": {
 "Destination":{
 "Type": "string"
 },
 "SourcePackage":{
 "Type": "string"
 },
 "SiteName":{
 "Type": "string"
 }
 },
 "Tasks":{
 "CreateSite":{
 "Type": "CreateSite",
 "Params":{
 "SiteName": "[parameter('SiteName')]",
 "Path": "[parameter('Destination')]"
 }
 },
 "InstallPackage":{
 "Type": "CreateSite",
 "Params":{
 "Source": "[parameter('SourcePackage')]",
 "Path": "[parameter('Destination')]"
 }
 }
 }
}

Another config can be created which includes the previous example:

{
 "Includes":{
 "CreateSite":{
 "Source": ".\\CreateSite.json"
 }

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 13

 }
}

You can override elements of the included config by using the namespace it was imported as (in this
case 'CreateSite'):

{
 "Parameters": {
 "CreateSite:Destination":{
 "Type": "string",
 "DefaultValue": "C:\\inetpub"
 }
 },
 "Includes":{
 "CreateSite":{
 "Source": ".\\CreateSite.json"
 }
 }
}

This example overrides the default value of the destination parameter imported by the CreateSite
config. A similar syntax is used to override Variables and Tasks.

You can also include the same config multiple times, as the name is used to namespace each feature:

{
 "Parameters": {
 "CreateSite:Destination":{
 "Type": "string",
 "DefaultValue": "C:\\inetpub"
 },
 "CreateBackupSite:Destination":{
 "Type": "string",
 "DefaultValue": "C:\\inetpubbackup"
 }
 },
 "Includes":{
 "CreateSite":{
 "Source": ".\\CreateSite.json"
 },
 "CreateBackupSite":{
 "Source": ".\\CreateSite.json"
 }
 }
}

3.1.10. Settings
Settings let you configure the default requirements of the installation process. Some settings
can be overridden at runtime for the user by passing them as parameters to the Install-
SitecoreConfiguration cmdlet.

For example:

Install-SitecoreConfiguration -WarningAction Stop -InformationAction SilentlyContinue

The values in the settings are applied from lowest to highest in the following order:

• Default value – contained in code.

• Configuration – set in the configuration file.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 14

• Command line – passed at the command line.

Name Default
Value

Allowed Values Command
Line

Description

WarningAction Continue Continue

Ignore

Inquire

SilentlyContinue

Stop

Suspend

Yes The action to take when a
warning occurs.

ErrorAction Stop Continue

Ignore

Inquire

SilentlyContinue

Stop Suspend

Yes The action to take when an
error occurs.

InformationAction Continue Continue

Ignore

Inquire

SilentlyContinue

Stop

Suspend

Yes The action to take when
information is logged.

AutoRegisterExtensios False True

False

No Enables Dynamic registration
of Tasks and Config Functions.

Settings within configuration files can be declared as:

{
 "Settings": {
 "AutoRegisterExtensions": true,
 "InformationAction": "SilentlyContinue"
 }
}

This configuration enables the AutoRegisterExtensions feature and sets the
InformationAction preference to SilentlyContinue.

3.2. Create tasks

Tasks are PowerShell functions that you can invoke from a SIF configuration. When you invoke a
configuration, each task performs an action. Because a task is implemented as a PowerShell function,
it benefits from all the features that PowerShell offers.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 15

3.2.1. The CmdletBinding Attribute
When you create a task, you must use the CmdletBinding attribute. This provides support for
common PowerShell parameters, such as those that control error handling.

It is best practice to use the SupportsShouldProcess parameter so that users can test the actions
that the task takes, without applying them. The following example uses the CmdletBinding attribute
in the Invoke-UnpackTask cmdlet:

Function Invoke-UnpackTask {
 [CmdletBinding(SupportsShouldProcess=$true)]
 param(
 # Parameters
)
 # function code
}

For more information about the CmdletBinding attribute, see About Functions
CmdletBindingAttribute in the Microsoft PowerShell documentation.

3.2.2. Task parameters
Task parameters are declared as normal PowerShell parameters. You can use validation and types to
restrict the values that can be passed to the cmdlet. This includes marking parameters as mandatory,
and support for multiple parameter sets.

When a task is called from a configuration, the Params property is mapped to the parameters that
are declared in the PowerShell function. For example, the Invoke-CopyTask cmdlet declares the
following parameters:

Function Invoke-CopyTask {
 [CmdletBinding(SupportsShouldProcess=$true)]
 param(
 [Parameter(Mandatory=$true)]
 [ValidateScript({ Test-Path $_ })]
 [string]$Source,
 [Parameter(Mandatory=$true)]
 [ValidateScript({ Test-Path $_ -IsValid })]
 [string]$Destination
)
function code
}

• The Source parameter is mandatory and checks that the given value is a string that points to a
path that exists.

• The Destination parameter is mandatory and checks that the given value is a string that is a
valid file path.

Here is an example of how to declare the Copy task in a configuration where only the mandatory
parameters are used:

{
 "Tasks": {
 "CopySomeFiles": {
 "Type": "Copy",
 "Params": {
 "Source":"c:\somefile\example.txt",
 "Destination":"c:\copied\"

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 16

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute?view=powershell-6

 }
 }
 }
}

3.2.3. Return values from task
Tasks do not need return values. When you invoke tasks through a configuration, the values returned
from a task are not captured or processed directly. However, any value that you return from a task is
shown in the installation logs.

3.2.4. Write to the logs
Previous versions of SIF used the Write-TaskInfo function to log information. This function has
been deprecated and will be removed in a future version. Use the Write-Information function
instead.

Write-Information -MessageData task "[Info] Updated"

Silent output
You cab specify silent output by re-directing all the streams to $null.

Install-SitecoreConfiguration -Path MyConfig.json *> $null

Creating a log file
In SIF version 1.x, every time you used the built-in PowerShell transcript features to invoke Install-
SitecoreConfiguration, a log file was automatically created.

This feature has been removed due to issues with different hosts and with the information that was
logged to a log file. To create a log file for an installation, use the following syntax:

c:\> Install-SitecoreConfiguration <parameters> *>&1 | Tee-Object <logfile>

*>&1 merges every stream - information, warning, and so on into the output stream.

| Tee-Object <logfile> outputs the stream to the console and to a log file.

3.2.5. Include tasks in a configuration
Once a task has been written, it must be registered with SIF. To include tasks in a configuration, you
must package them as a PowerShell module and add them to the Modules section of a configuration,
by directly registering them within a configuration, or enabling the autoregisterextensions
function.

When you use the Register-SitecoreInstallExtension cmdlet, you can use the task in
configurations. For example, to register the Copy-CustomItems cmdlet as the CustomCopy task,
use the following cmdlet:

Register-SitecoreInstallExtension -Command Copy-CustomItems -As CustomCopy -Type Task

NOTE
You can replace an existing registered task by using the -Force parameter.
The following custom cmdlet replaces the default copy task: Register-
SitecoreInstallExtension -Command Copy-CustomItems -As Copy -Type
Task –Force.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 17

3.3. Create config functions

Config functions are PowerShell functions that you can invoke from within a SIF configuration to
access and calculate values that you can then pass to a task.

Because a config function is implemented as a PowerShell function, it benefits from all the features
that PowerShell offers. This includes parameter validation, strict mode, requires, and others.

Config functions must always return a value, and this value can be used by other config functions or
by tasks within a configuration.

3.3.1. Config function parameters
Config function parameters are declared as normal PowerShell parameters. You can use validation
and types to restrict the values that can be passed. This includes marking parameters as mandatory
and support for multiple parameter sets.

When a config function is called from a configuration, the parameters are applied in the order that
they are declared. If you want them to be applied in a different order, use the Position argument to
specify the order.

The Invoke-JoinConfigFunction function declares the following parameters:

Function Invoke-JoinConfigFunction {
 param(
 [Parameter(Mandatory=$true)]
 [psobject[]]$Values = @(),
 [Parameter(Mandatory=$false)]
 [string]$Delimiter = ","
)

 # function code
}

In a configuration, this can be used as follows:

{
 "Parameters": {
 "Values": { "Type": "string[]", "DefaultValue": [1,2,3,4,5]
 },
 "Variables": {
 "Joined": "[join(parameter('Values'), '-')]
 }
}

When the Joined variable is evaluated, it results in a value of: 1-2-3-4-5.

3.3.2. Include config functions in a configuration
Once you have written a config function, it must be registered with SIF. You can include config
functions in a configuration by packaging them as a PowerShell module and adding them to the
Modules section of a configuration.

By using the Register-SitecoreInstallExtension cmdlet, the config function is made available
for use in configurations. For example the following cmdlet registers the Get-CustomJoin cmdlet as
the CustomJoin config function:

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 18

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters?view=powershell-5.1#position-argument

Register-SitecoreInstallExtension
-Command Get-CustomJoin -As CustomJoin -Type ConfigFunction

NOTE
You can also use the -Force parameter to replace an existing registered config
function. In the following example, the default join config function is replaced with a
custom cmdlet:

Register-SitecoreInstallExtension -Command Get-CustomJoin -As Join -Type
ConfigFunction –Force

3.4. Invoking an installation

To start a Sitecore installation, use the following syntax:

Install-SitecoreConfiguration [-Path] <String> [[-Tasks] <String[]>] [[-From] <String>] [[-To]
<String>]
[[-Skip] <String[]>] [[-WorkingDirectory] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

This starts the Sitecore installation and uses the given configuration loaded from the specified path.

The working directory is set as follows:

• If provided, the working directory is set to the given path.

• The current directory is used.

One or more tasks can also be passed to enable the execution of only a selection of tasks from the
full configuration. If no tasks are passed (or an empty list is provided) all the tasks are executed.
Task execution can be further restricted by using the From and To parameters to specify an inclusive
subset of tasks.

The parameters contained in the configuration file can also be overridden at the command line.

3.4.1. Examples
Examples based on JSON configuration files.

Example 1

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json

Starts an installation based on a JSON configuration file.

Example 2

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -Tasks Alpha,Beta,Epsilon

Starts an installation based on a JSON configuration file and executes only the named tasks.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 19

Example 3

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -Skip Alpha,Beta

Starts an installation based on a JSON configuration file and executes all the tasks except the named
tasks.

Example 4

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -From Beta

Starts an installation based on a JSON configuration file and executes from the specified task.

Example 5

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -From Alpha -To Beta

Starts an installation based on a JSON configuration file and executes all the tasks from the task
named Alpha to the task named Beta.

Example 6

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -SiteName 'MySite'

Starts an installation based on a JSON configuration file and overrides the value for the SiteName
parameter contained in that file.

Example 7

PS C:\> Install-SitecoreConfiguration -Path .\MyConfig.json -SkipValidation

Starts an installation based on a JSON configuration file and skips parameter validation.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 20

4. Further guidance and troubleshooting

SIF contains embedded documentation about tasks and configuration functions that you can access
directly from the PowerShell command line.

4.1. Further usage and help

This section contains the following additional information that might be useful when you are using
Sitecore Installation Framework:

4.1.1. Run tasks and config functions directly
Tasks and config functions are implemented as PowerShell cmdlets. When SIF is installed, you can use
standard PowerShell syntax to directly invoke these cmdlets.

Running tasks or config functions directly allows you to test the results at the command line. You can
also integrate the commands into your own PowerShell scripts.

For example, you can directly invoke the EnsurePath task by using its full PowerShell syntax:

Similarly, you can directly invoke the Join config function by using its full PowerShell syntax:

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 21

4.1.2. Execution policies
The PowerShell execution policies let you restrict the conditions in which scripts and modules are
loaded.

You can set policies for the computer, the user, or for the current session. You can also use a Group
Policy to apply them. SIF is digitally signed. This means that the module can be imported and executed
in a PowerShell session running under any execution policy, except Restricted.

4.1.3. Get help about Sitecore Installation Framework
SIF contains information about each task and config function as well as general documentation about
the framework:

about_SitecoreInstallFramework - general information about the framework.

about_SitecoreInstallFramework_Extending - information about extension points that let you
customize the framework.

about_SitecoreInstallFramework_Configurations - examples of how to use tasks, scripts, and
modules if you extend the framework.

There are three ways to view the help documentation:

• In the PowerShell window.

• With a markdown reader.

• As HTML pages.

In addition to the help for individual tasks and functions, you can also use the Get-Command cmdlet to
see a list of all the available tasks and config functions.

View help in the PowerShell window
The PowerShell module has embedded help documentation. To see the help, enter the Get-Help
cmdlet and the help is displayed in the command line.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 22

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-5.1

If you want to open the help for a specific PowerShell command or function in a separate
window, add the ShowWindow parameter to the Get-Help cmdlet. For example: Get-Help Invoke-
CommandTask -ShowWindow:

View help with a markdown reader
When you unpack SIF, it contains a folder of markdown documentation that you can read with any
text editor or markdown reader.

To read the documentation, in Windows Explorer, go to the SitecoreInstallFramework\docs
folder and use a text editor or markdown reader to open the relevant topic:

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 23

View help as HTML pages
SIF also contains a folder of HTML pages that you can read with any browser. To read the
documentation:

1. In Windows Explorer, go to the SitecoreInstallFramework\docs\html folder.

2. To open a topic in the default browser, double-click it.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 24

Get a list of the available tasks and config functions
To see the tasks and config functions that are available, run the Get-SitecoreInstallExtension
cmdlet.

You can filter the list by passing a value to the Type parameter.

The following command returns the tasks:

Get-SitecoreInstallExtension -Type Task

To return the tasks and config functions that are available when a particular configuration is run, you
must pass the path to the configuration file to the Path parameter.

For example,

Get-SitecoreInstallExtension -Path c:\configuration.json

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 25

displays the default tasks and config functions, as well as the extra registrations brought in by the
configuration.

4.2. Troubleshooting

This section describes some of the issues that you can encounter when using SIF and how to resolve
them.

4.2.1. Internal server error
After a successful installation, the CM instance cannot be started and the following error is displayed:

HTTP Error 500.19 – Internal Server Error
The requested page cannot be accessed because the related configuration data for the page is
invalid.
Error Code 0x8007000d

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 26

To resolve this error, install the URL Rewrite module for IIS:

• Install URL Rewrite 2.1 using the Web Platform Installer.

4.2.2. Error when you invoke the WebDeploy task
When you run Invoke-WebDeployTask, you might see the following error:

ERROR_SCRIPTDOM_NEEDED_FOR_SQL_PROVIDER

This error appears when the web deploy package uses the SQL DACFx framework to install the
databases and the provider has not been registered.

To resolve this error, ensure that you have the following components installed:

• SQL Server System CLR Types (2016 version)

• SQL Server Transact-SQL ScriptDom (2016 version)

• SQL Server Data-Tier Application (2016 version)

NOTE
If you are running the Sitecore installation from a 64-bit computer (x64), you must
install both the 32-bit (x86) and 64-bit versions of the SQL Server components.

If you still receive the error after installing the SQL Server components, you must directly register the
ScriptDom components.

To register the ScriptDom component:

1. In Windows Explorer, go to the C:\Program Files (x86)\Microsoft SQL Server folder.

2. The Microsoft SQL Server folder contains several subfolders. Click the subfolders
(for example \90, \100, \110, \120, \130, \140) and find the
\DAC\bin\Microsoft.SqlServer.TransactSql.ScriptDom.dll file.

3. Copy or write down the path to the DLL file.

4. Launch PowerShell and go to the C:\Program Files (x86)\Microsoft
SDKs\Windows\v8.1A\bin\NETFX 4.5.1 Tools folder.

5. Invoke the gacutil application and enter the path to the DLL file. For example:

gacutil.exe /i C:\Program Files (x86)\Microsoft SDKs\Windows\v8.1A\bin\NETFX 4.5.1
Tools\120\DAC\bin\Microsoft.SqlServer.TransactSql.ScriptDom.dll

4.2.3. Missing modules
Some SIF features require that other modules are loaded as well. You might see warnings that certain
tasks cannot be loaded when importing the module.

You can continue to use other features in the module, however, the features that displayed the
warnings cannot be executed. For example, if the WebAdministration module is not available, you
see the following warnings:

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 27

https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=52676
https://www.microsoft.com/en-us/download/details.aspx?id=52676
https://www.microsoft.com/en-us/download/details.aspx?id=46898

When this happens, the module is loaded but the following tasks are not available:

• Invoke-AppPoolTask

• Invoke-WebBindingTask

• Invoke-WebsiteTask

NOTE
To install the WebAdministration module, you must first configure IIS on your computer.
For more information about how to configure IIS, see the appropriate Sitecore XP
Installation Guide.

4.2.4. Administrator permissions
To run SIF, you must run PowerShell as an administrator.

IMPORTANT
If you try to use SIF in a non-administration window, you might see one of the following
error messages and you will not be able to install Sitecore.

4.2.5. Sitecore installation failed while using Skype
If you are using Skype or another communication tool when you are installing Sitecore, the xConnect
installation might fail. This happens because Skype and Sitecore xConnect both use port 443. If this
happens, you must change your Skype configuration.

Another way to solve this issue is to update the default HTTP port, and if needed the HTTPS port.

Updating the default HTTP port
Updating the default HTTP port can be applied to the following Sitecore configurations:

• All Sitecore configurations

• All xConnect configurations

To update the default HTTP port:

1. In a text editor, open the relevant configuration file, for example: sitecore-xp1.json.

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 28

https://dev.sitecore.net
https://dev.sitecore.net
https://answers.microsoft.com/en-us/windows/forum/windows_7-winapps/unable-to-remove-port-443-from-skype/4e224910-761a-4de5-a6d8-ae4150656d68

2. In the CreateWebsite task, add a Port property to the Params collection with the new value.
For example: "CreateWebsite": {

Sitecore Installation Framework 2.3.0 Configuration Guide

© Copyright 2023, Sitecore® - all rights reserved. 29

	Sitecore Installation Framework 2.3.0 Configuration Guide
	Table of Contents
	1. Introduction
	1.1. Getting started
	1.1.1. How to use this guide

	2. Install the Sitecore Installation Framework module
	2.1. Install the Sitecore Installation Framework Module
	2.1.1. Install SIF with Microsoft PowerShell
	Update the Sitecore Installation Framework Module

	2.1.2. Install SIF manually
	Unblock a ZIP package
	Extract the Sitecore Installation Framework

	2.1.3. Validate the installation
	2.1.4. Import Sitecore Installation Framework into a PowerShell session

	2.2. Multiple Versions of Sitecore Installation Framework
	2.2.1. Run a specific version of SIF

	3. Customize the Sitecore Installation Framework
	3.1. Create and customize configurations
	3.1.1. Tasks
	Skipping tasks
	Requires (prerequisites)

	3.1.2. Parameters
	Parameters validation

	3.1.3. Config functions
	Named parameters

	3.1.4. Variables
	3.1.5. Modules
	3.1.6. Uninstall tasks
	3.1.7. Register
	3.1.8. Automatic registration of extensions
	3.1.9. Includes
	3.1.10. Settings

	3.2. Create tasks
	3.2.1. The CmdletBinding Attribute
	3.2.2. Task parameters
	3.2.3. Return values from task
	3.2.4. Write to the logs
	Silent output
	Creating a log file

	3.2.5. Include tasks in a configuration

	3.3. Create config functions
	3.3.1. Config function parameters
	3.3.2. Include config functions in a configuration

	3.4. Invoking an installation
	3.4.1. Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	4. Further guidance and troubleshooting
	4.1. Further usage and help
	4.1.1. Run tasks and config functions directly
	4.1.2. Execution policies
	4.1.3. Get help about Sitecore Installation Framework
	View help in the PowerShell window
	View help with a markdown reader
	View help as HTML pages
	Get a list of the available tasks and config functions

	4.2. Troubleshooting
	4.2.1. Internal server error
	4.2.2. Error when you invoke the WebDeploy task
	4.2.3. Missing modules
	4.2.4. Administrator permissions
	4.2.5. Sitecore installation failed while using Skype
	Updating the default HTTP port

